The open shell (SC)(2)-CAS-SDCI method along with a basis set of atomic natural orbitals (ANO) has been applied for calculating the main ionization potentials of acetylene, as well as the manifold of excited states of the different symmetries up to 32 eV. In this method, the single and double excitations of a CAS space are generated and the corresponding CI matrix is corrected by means of the (SC)(2) procedure that cancels the size-extensivity error and adds some high order contributions. The mean absolute error for the outer-valence X (2)Pi(u)(1pi(u) (-1)), A (2)Sigma(g) (+)(3sigma(g) (-1)), and B (2)Sigma(u) (+)(2sigma(u) (-1)) states, and the inner-valence C (2)Sigma(g) (+)(2sigma(g) (-1)) state is 0.1 eV. The excited states of C(2)H(2) (+) corresponding to the Sigma(g) (+), Sigma(u) (+), Pi(g), Pi(u), Delta(g), and Delta(u) symmetries are reported and their composition is discussed. The results are thoroughly compared to the best available multireference CI calculations. Recent multichannel CI results by Wells and Lucchese [J Chem Phys 1999, 110, 6365] have been used also as a guide for the discussion of the results. Discrepancies in the description of many multiconfigurational states by means of the (SC)(2)-CAS-SDCI wave function as compared to previous large MR-CI calculations are significant and are, consequently, remarked on. A large mixing of the 3sigma(g) (-1) and 2sigma(g) (-1) processes is found in the A (2)Sigma(g) (+) and C (2)Sigma(g) (+) states, provided that the basis set is augmented with Rydberg functions., (Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 609-617, 2003)