1. Efficient removal of methylene blue from aqueous solutions using magnetic graphene oxide modified zeolite
- Author
-
Zhenzhen Huang, Kai He, Lei Yuan, Ming Yan, Tiantian Huang, Anwei Chen, Min Peng, Guiqiu Chen, Hui Li, and Guangming Zeng
- Subjects
Aqueous solution ,Materials science ,Graphene ,Oxide ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,law.invention ,Biomaterials ,chemistry.chemical_compound ,Colloid and Surface Chemistry ,Adsorption ,chemistry ,Chemical engineering ,law ,Freundlich equation ,0210 nano-technology ,Dispersion (chemistry) ,Zeolite ,Methylene blue - Abstract
In this study, magnetic graphene oxide modified zeolite (Cu-Z-GO-M) composites with two different ratios of GO to zeolite (named Cu-Z-GO-M 1:2 and Cu-Z-GO-M 1:1) were synthesized by solid-state dispersion (SSD) method. The properties of zeolite-based composites were characterized by SEM, XRD, FTIR, XPS, and magnetization curves. In order to understand the pollutant removal performance of the as-prepared composites, methylene blue (MB) was used as the target pollutant in adsorption experiments. The removal efficiency of MB onto Cu-Z-GO-M composite was enhanced obviously with pH > 9. The adsorption capacities of MB onto Cu-Z-GO-M 1:1 were 82.147, 89.315, 97.346 mg/g at 298, 308, and 318 K, respectively. The removal ability of MB increased with the increase of GO content in modified composites. The adsorption behavior can be well described using a pseudo-second-order kinetic and Freundlich isotherm model. The thermodynamic analysis indicated the MB adsorption by Cu-Z-GO-M was a spontaneous and endothermic reaction. The results showed that the prepared Cu-Z-GO-M composite could be a promising adsorbent with good adsorption capacity and reusability for MB removal from wastewater. more...
- Published
- 2019
- Full Text
- View/download PDF