67 results on '"Alexeev V"'
Search Results
2. Impact of Parameterized Convection on the Storm Track and Near-Surface Jet Response to Global Warming: Implications for Mechanisms of the Future Poleward Shift.
- Author
-
Garfinkel, Chaim I., Keller, Benny, Lachmy, Orli, White, Ian, Gerber, Edwin P., Jucker, Martin, and Adam, Ori
- Abstract
While a poleward shift of the near-surface jet and storm track in response to increased greenhouse gases appears to be robust, the magnitude of this change is uncertain and differs across models, and the mechanisms for this change are poorly constrained. An intermediate complexity GCM is used in this study to explore the factors governing the magnitude of the poleward shift and the mechanisms involved. The degree to which parameterized subgrid-scale convection is inhibited has a leading-order effect on the poleward shift, with a simulation with more convection (and less large-scale precipitation) simulating a significantly weaker shift, and eventually no shift at all if convection is strongly preferred over large-scale precipitation. Many of the physical processes proposed to drive the poleward shift are equally active in all simulations (even those with no poleward shift). Hence, we can conclude that these mechanisms are not of leading-order significance for the poleward shift in any of the simulations. The thermodynamic budget, however, provides useful insight into differences in the jet and storm track response among the simulations. It helps identify midlatitude moisture and latent heat release as a crucial differentiator. These results have implications for intermodel spread in the jet, hydrological cycle, and storm track response to increased greenhouse gases in intermodel comparison projects. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. Robust Polar Amplification in Ice-Free Climates Relies on Ocean Heat Transport and Cloud Radiative Effects.
- Author
-
England, Mark R. and Feldl, Nicole
- Subjects
OCEAN ,POLAR climate ,GLOBAL warming ,SEA ice ,ATMOSPHERIC models ,MODEL theory - Abstract
A fundamental divide exists between previous studies that conclude that polar amplification does not occur without sea ice and studies that find that polar amplification is an inherent feature of the atmosphere independent of sea ice. We hypothesize that a representation of climatological ocean heat transport is key for simulating polar amplification in ice-free climates. To investigate this, we run a suite of targeted experiments in the slab ocean aquaplanet configuration of CESM2-CAM6 with different profiles of prescribed ocean heat transport, which are invariant under CO2 quadrupling. In simulations without climatological ocean heat transport, polar amplification does not occur. In contrast, in simulations with climatological ocean heat transport, robust polar amplification occurs in all seasons. What is causing this dependence of polar amplification on ocean heat transport? Energy-balance model theory is incapable of explaining our results and in fact would predict that introducing ocean heat transport leads to less polar amplification. We instead demonstrate that shortwave cloud radiative feedbacks can explain the divergent polar climate responses simulated by CESM2-CAM6. Targeted cloud locking experiments in the zero ocean heat transport simulations are able to reproduce the polar amplification of the climatological ocean heat transport simulations, solely by prescribing high-latitude cloud radiative feedbacks. We conclude that polar amplification in ice-free climates is underpinned by ocean–atmosphere coupling, through a less negative high latitude shortwave cloud radiative feedback that facilitates enhanced polar warming. In addition to reconciling previous disparities, these results have important implications for interpreting past equable climates and climate projections under high-emissions scenarios. Significance Statement: Polar amplification is a robust feature of climate change in the modern-day climate. However, previous climate modeling studies fundamentally do not agree on whether polar amplification occurs in ice-free climates. In this study, we find in a state-of-the-art climate model that, if ocean heat transport is neglected, the response to an increase in CO2 is not polar amplified, whereas robust polar amplification occurs if ocean heat transport is included. Using targeted model experiments, we diagnose cloud radiative effects as the driver of this divergent behavior. We conclude that polar amplification is a robust feature of the atmosphere–ocean system. Our results have important implications for interpreting past warm climates and future projections under high-emissions scenarios. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. Trends in Atmospheric Heat Transport Since 1980.
- Author
-
Cox, Tyler, Donohoe, Aaron, Armour, Kyle C., Frierson, Dargan M. W., and Roe, Gerard H.
- Subjects
ATMOSPHERIC transport ,OCEAN temperature ,ATMOSPHERIC models ,CONFIDENCE regions (Mathematics) - Abstract
We investigate the linear trends in meridional atmospheric heat transport (AHT) since 1980 in atmospheric reanalysis datasets, coupled climate models, and atmosphere-only climate models forced with historical sea surface temperatures. Trends in AHT are decomposed into contributions from three components of circulation: (i) transient eddies, (ii) stationary eddies, and (iii) the mean meridional circulation. All reanalyses and models agree on the pattern of AHT trends in the Southern Ocean, providing confidence in the trends in this region. There are robust increases in transient-eddy AHT magnitude in the Southern Ocean in the reanalyses, which are well replicated by the atmosphere-only models, while coupled models show smaller magnitude trends. This suggests that the pattern of sea surface temperature trends contributes to the transient-eddy AHT trends in this region. In the tropics, we find large differences between mean-meridional circulation AHT trends in models and the reanalyses, which we connect to discrepancies in tropical precipitation trends. In the Northern Hemisphere, we find less evidence of large-scale trends and more uncertainty, but note several regions with mismatches between models and the reanalyses that have dynamical explanations. Throughout this work we find strong compensation between the different components of AHT, most notably in the Southern Ocean where transient-eddy AHT trends are well compensated by trends in the mean-meridional circulation AHT, resulting in relatively small total AHT trends. This highlights the importance of considering AHT changes holistically, rather than each AHT component individually. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
5. The Respective Roles of Ocean Heat Transport and Surface Heat Fluxes in Driving Arctic Ocean Warming and Sea Ice Decline.
- Author
-
Oldenburg, Dylan, Kwon, Young-Oh, Frankignoul, Claude, Danabasoglu, Gokhan, Yeager, Stephen, and Kim, Who M.
- Subjects
HEAT flux ,SEA ice ,OCEAN ,HEAT losses ,OCEAN currents ,LATENT heat - Abstract
Arctic Ocean warming and sea ice loss are closely linked to increased ocean heat transport (OHT) into the Arctic and changes in surface heat fluxes. To quantitatively assess their respective roles, we use the 100-member Community Earth System Model, version 2 (CESM2), Large Ensemble over the 1920–2100 period. We first examine the Arctic Ocean warming in a heat budget framework by calculating the contributions from heat exchanges with atmosphere and sea ice and OHT across the Arctic Ocean gateways. Then we quantify how much anomalous heat from the ocean directly translates to sea ice loss and how much is lost to the atmosphere. We find that Arctic Ocean warming is driven primarily by increased OHT through the Barents Sea Opening, with additional contributions from the Fram Strait and Bering Strait OHTs. These OHT changes are driven mainly by warmer inflowing water rather than changes in volume transports across the gateways. The Arctic Ocean warming driven by OHT is partially damped by increased heat loss through the sea surface. Although absorbed shortwave radiation increases due to reduced surface albedo, this increase is compensated by increasing upwelling longwave radiation and latent heat loss. We also explicitly calculate the contributions of ocean–ice and atmosphere–ice heat fluxes to sea ice heat budget changes. Throughout the entire twentieth century as well as the early twenty-first century, the atmosphere is the main contributor to ice heat gain in summer, though the ocean's role is not negligible. Over time, the ocean progressively becomes the main heat source for the ice as the ocean warms. Significance Statement: Arctic Ocean warming and sea ice loss are closely linked to increased ocean heat transport (OHT) into the Arctic and changes in surface heat fluxes. Here we use 100 simulations from the same climate model to analyze future warming and sea ice loss. We find that Arctic Ocean warming is primarily driven by increased OHT through the Barents Sea Opening, though the Fram and Bering Straits are also important. This increased OHT is primarily due to warmer inflowing water rather than changing ocean currents. This ocean heat gain is partially compensated by heat loss through the sea surface. During the twentieth century and early twenty-first century, sea ice loss is mainly linked to heat transferred from the atmosphere; however, over time, the ocean progressively becomes the most important contributor. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
6. Asymmetric Arctic and Antarctic Warming and Its Intermodel Spread in CMIP6.
- Author
-
Zhang, Yihan, Kong, Yunqi, Yang, Song, and Hu, Xiaoming
- Subjects
ANTARCTIC Circumpolar Current ,ATMOSPHERIC water vapor ,OCEAN circulation ,SEA ice ,ATMOSPHERIC circulation ,WATER vapor transport - Abstract
Under the background of global warming, the Arctic region has warmed faster than the Antarctic, which is referred to as asymmetric Arctic and Antarctic warming. The new generation of model simulations from the CMIP6 offers an opportunity to identify the major factors contributing to the asymmetric warming and its intermodel spread. In this study, the preindustrial and abrupt-4 × CO2 experiments from 18 CMIP6 models are examined to extract the asymmetric warming and its intermodel spread. A climate feedback-response analysis method is applied to reveal the contributions of external and internal feedback processes to the asymmetric warming and its intermodel spread, by decomposing total warming into the partial temperature changes caused by individual factors. It is found that a seasonal energy transfer mechanism (SETM) dominates in both polar warmings. The direct consequence of the sea ice declining in response to the anthropogenic forcing is an increase in the effective heat capacity of the ocean surface layer. Such an increase in the effective heat capacity temporally withholds most of the extra solar energy absorbed during summer and then releases it during winter, contributing to stronger warming in winter. However, the background oceanic circulation in the Southern Ocean, namely, the Antarctic Circumpolar Current, continually transports energy equatorward, resulting in a suppressed SETM and surface warming in the Antarctic. The key factor that accounts for intermodel spread in the asymmetric warming is the difference in their strengths of SETM. The poleward atmospheric transport and water vapor feedback also contribute to the intermodel spread. Significance Statement: The asymmetric Arctic and Antarctic warming, as a response to the increase in CO2, can regulate global atmospheric and oceanic circulations via meridional temperature gradient. Previous studies have all ascribed the key role of the ocean in the asymmetric warming over the two poles with a lack of comprehensive understanding of the roles of other feedback processes. This study emphasizes that oceanic circulation is the root of the asymmetric warming via suppressing sea ice retreat and the associated SETM in the Antarctic, instead of increasing ocean heat uptake and equatorward transport only. For the intermodel spread in the asymmetric warming over two poles, the differences in the strength of all processes involving the SETM among models are the prominent issue. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
7. Contrasting Deep and Shallow Winter Warming over the Barents–Kara Seas on the Intraseasonal Time Scale.
- Author
-
Li, Juncong, Chen, Xiaodan, Guo, Yuanyuan, and Wen, Zhiping
- Subjects
LATENT heat ,ADVECTION ,WINTER ,COOLING ,ATMOSPHERIC circulation ,TUNDRAS - Abstract
The vertical structure of Arctic warming is of great importance and attracts increasing attention. This study defines two types of Arctic warming events (deep versus shallow) according to their temperature profiles averaged over the Barents–Kara Seas (BKS), and thereupon compares their characteristics and examines their difference in generation through thermodynamic diagnoses. A deep Arctic warming event—characterized by significant bottom-heavy warming extending from the surface into the middle-to-upper troposphere—emanates from the east of Greenland and then moves downstream toward the BKS primarily through zonal temperature advection. The peak day of deep warming event lags that of the precipitation and resultant diabatic heating over southeast Greenland by about four days, suggesting that the middle-to-high tropospheric BKS warming is likely triggered by the enhanced upstream convection at the North Atlantic high latitudes. In contrast, a shallow warming event—manifested by warming confined within the lower troposphere—is preceded by the meridional advection of warm air from inland Eurasia. These anomalous southerlies over Eurasian lands during shallow warming events are related to the eastward extension of the deepened Icelandic low. During deep warming events, the in situ reinforcement of the Icelandic low favors abundant moisture transport interplaying with the southeast Greenland terrain, leading to intense precipitation and latent heat release there. Both deep and shallow warming events are accompanied by Eurasian cooling, but the corresponding cooling of the deep warming event is profoundly stronger. Further, intraseasonal deep Arctic warming events could explain nearly half of the winter-mean change in the warm Arctic–cold Eurasia anomaly. Significance Statement: Divergent conclusions on whether Arctic warming is influencing the midlatitudes impede a clear understanding of the warm Arctic–cold Eurasia (WACE) phenomenon. Recent findings that on the interannual or longer time scales, Eurasian cooling tends to occur in the presence of deep rather than shallow Arctic warming have attracted increasing concern regarding the vertical structure of Arctic warming. On this basis, here we classify intraseasonal Arctic warming events into deep and shallow groups and contrast them from various aspects. Emerging near eastern Greenland and associated with upstream convection activities, intraseasonal deep Arctic warming events are accompanied by significant Eurasian cooling, largely determining the seasonal-mean WACE condition. However, caused by meridional temperature advection from Eurasian lands, shallow warming events less correlate with Eurasian cooling. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
8. Extreme Surface Energy Budget Anomalies in the High Arctic in Winter.
- Author
-
Murto, Sonja, Papritz, Lukas, Messori, Gabriele, Caballero, Rodrigo, Svensson, Gunilla, and Wernli, Heini
- Subjects
ENERGY budget (Geophysics) ,SEA ice ,LIFE cycles (Biology) ,EDDY flux ,INFRARED radiation ,ARCTIC climate - Abstract
In recent decades, the Arctic has warmed faster than the global mean, especially during winter. This has been attributed to various causes, with recent studies highlighting the importance of enhanced downward infrared radiation associated with anomalous inflow of warm, moist air from lower latitudes. Here, we study wintertime surface energy budget (SEB) anomalies over Arctic sea ice on synoptic time scales, using ERA5 (1979–2020). We introduce a new algorithm to identify areas with extreme, positive daily mean SEB anomalies and connect them to form spatiotemporal life cycle events. Most of these events are associated with large-scale inflow from the Atlantic and Pacific Oceans, driven by poleward deflection of the storm track and blocks over northern Eurasia and Alaska. Events originate near the ice edge, where they have roughly equal contributions of net longwave radiation and turbulent fluxes to the positive SEB anomaly. As the events move farther into the Arctic, SEB anomalies decrease due to weakening sensible and latent heat-flux anomalies, while the surface temperature anomaly increases toward the peak of the events along with the downward longwave radiation anomaly. Due to these temporal and spatial differences, the largest SEB anomalies are not always related to strongest surface warming. Thus, studying temperature anomalies alone might not be sufficient to determine sea ice changes. This study highlights the importance of turbulent fluxes in driving SEB anomalies and downward longwave radiation in determining local surface warming. Therefore, both processes need to be accurately represented in climate models. Significance Statement: Mechanisms behind wintertime rapid Arctic warming and sea ice growth changes are not well understood. While much is known about the impact of radiative fluxes on both sea ice variability and surface warming, the relative importance of radiative and turbulent fluxes remains unclear. The purpose of this study is to clarify what controls surface energy budget (SEB) anomalies over sea ice. Along the life cycle of synoptic-scale events, positive SEB anomalies are shown to decrease and surface temperature anomalies increase after their onset. Additionally, variations in SEB anomalies are primarily controlled by turbulent fluxes, while downward longwave radiative fluxes are mainly responsible for surface temperature variations. These results highlight the need for accurate representations of these fluxes for predicting future Arctic climate. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
9. Can Polar Stratospheric Clouds Explain Arctic Amplification?
- Author
-
Dutta, Deepashree, Sherwood, Steven C., Jucker, Martin, Gupta, Alex Sen, and Meissner, Katrin J.
- Subjects
GLOBAL warming ,PALEOGENE ,RADIATIVE forcing ,COOLING of water ,ATMOSPHERIC models ,OZONE layer ,POLAR vortex - Abstract
Climate models underestimate the magnitude of Arctic warming in past warm climates, like the early Cretaceous and Paleogene periods, implying that certain physical processes might be missing or poorly represented. Previous studies suggest that a large increase in wintertime Arctic polar stratospheric clouds (PSCs) might have promoted Arctic amplification through additional greenhouse warming. High methane concentrations in warm climates might have increased stratospheric water vapor providing favorable conditions for PSCs. However, methane concentrations in past warm climates are extremely uncertain. Here, we revisit the PSC hypothesis by exploring PSC changes under very high methane levels, 4× preindustrial carbon dioxide, and strong polar-amplified surface warming, using a whole-atmosphere model with fully interactive chemistry. We find that with polar-amplified warming there is a large increase in Arctic outgoing longwave radiation (OLR) that reduces as the methane concentration is increased. PSCs increase monotonically with methane concentration. A large radiative cooling and an increase in water vapor in the stratosphere increases Arctic PSCs, which follow a power law with respect to relative humidity. Using a two-way partial radiative perturbation technique, we show that the OLR reduction due to PSCs is similar to the direct radiative forcing of methane for high methane levels. Thus, we find that PSCs could play an important role in Arctic warming in a warmer-than-present-day climate, but only if methane levels were higher than suggested by previous modeling studies for past warm climates. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
10. Climate Feedback to Stratospheric Aerosol Forcing: The Key Role of the Pattern Effect.
- Author
-
Günther, Moritz, Schmidt, Hauke, Timmreck, Claudia, and Toohey, Matthew
- Subjects
STRATOSPHERIC aerosols ,CLIMATE feedbacks ,VOLCANIC eruptions ,GLOBAL temperature changes ,RADIATIVE forcing ,GLOBAL cooling - Abstract
Volcanic aerosol forcing has previously been found to cause a weak global mean temperature response, as compared with CO2 radiative forcing of equal magnitude: its efficacy is supposedly low, but for reasons that are not fully understood. To investigate this, we perform idealized, time-invariant stratospheric sulfate aerosol forcing simulations with the MPI-ESM-1.2 and compare them with 0.5 × CO2 and 2 × CO2 runs. While the early decades of the aerosol forcing simulations are characterized by strong negative feedback (i.e., low efficacy), the feedback weakens on the decadal to centennial time scale. Although this effect is qualitatively also found in CO2-warming simulations, it is more pronounced for stratospheric aerosol forcing. The strong early and weak late cooling feedbacks compensate, leading to an equilibrium efficacy of approximately 1 in all simulations. The 0.5 × CO2 cooling simulations also exhibit strong feedback changes over time, albeit less than in the idealized aerosol forcing simulations. This suggests that the underlying cause for the feedback change is not exclusively specific to aerosol forcing. One critical region for the feedback differences between simulations with negative and positive radiative forcing is the tropical Indo-Pacific warm-pool region (30°S–30°N, 50°E–160°W). In the first decades of cooling, the temperature change in this region is stronger than the global average, whereas it is stronger outside it for 2 × CO2 warming. In cooling scenarios, this leads to an enhanced activation of the warm-pool region's strongly negative lapse-rate feedback. Significance Statement: Large volcanic eruptions can enhance the scattering aerosol layer in the stratosphere, which leads to a global cooling for a few years. Surprisingly, Earth has been found to cool less from radiative flux perturbations from stratospheric aerosol forcing, in comparison with how much it warms as a result of increases in CO2 concentration. We find that specific surface temperature change patterns after volcanic eruptions cause this effect. The temperature change in the tropical Indian and western Pacific Ocean determines how much global temperature change is needed to regain radiative equilibrium. Our findings contribute to understanding the climate response to volcanic eruptions and are relevant for understanding the mechanisms of climate change due to changes in CO2 concentration. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
11. On the Diffusivity of Moist Static Energy and Implications for the Polar Amplification Response to Climate Warming.
- Author
-
Lu, Jian, Zhou, Wenyu, Kong, Hailu, Leung, L. Ruby, Harrop, Bryce, and Song, Fengfei
- Subjects
ISOTHERMAL temperature ,CLAUSIUS-Clapeyron relation ,RADIATIVE forcing ,SURFACE temperature ,ATMOSPHERIC circulation - Abstract
Energy balance models (EBMs) have been widely used in a range of climate problems, but the assumption of constant diffusivity in the parameterization of the moist static energy (MSE) flux can hardly be justified. We demonstrate in this study that the diffusive MSE flux can be derived from the basic energy balance equation with a few tolerable assumptions. The estimated diffusivity is both spatially and seasonally dependent, and its midlatitude average is then tested against several scaling theories for the midlatitude eddy diffusivity. The result supports the diffusivity theory of Held and Larichev modified for the moist atmosphere, affording a dynamics-based parameterization of MSE diffusivity. The implementation of the parameterization in an EBM leads to an interactive MSE diffusivity that accounts for the midlatitude eddy response to climate forcing perturbations. Under a uniform radiative forcing, the EBM with a diffusivity so parameterized produces a weakening of the midlatitude diffusivity and a modestly polar-amplified surface temperature response as an inevitable outcome under the dual constraints of the nonlinear Clausius–Clapeyron relation and the temperature gradient-dependent diffusivity, even in the absence of any poleward-amplifying radiative feedbacks. As the consequence of more isothermal temperature and reduced diffusivity, the variance of the midlatitude surface temperature also decreases with warming. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
12. Symmetric and Antisymmetric Components of Polar-Amplified Warming.
- Author
-
Hill, Spencer A., Burls, Natalie J., Fedorov, Alexey, and Merlis, Timothy M.
- Subjects
GENERAL circulation model ,PSYCHOLOGICAL feedback - Abstract
CO2-forced surface warming in general circulation models (GCMs) is initially polar amplified in the Arctic but not in the Antarctic—a largely hemispherically antisymmetric signal. Nevertheless, we show in CESM1 and 11 LongRunMIP GCMs that the hemispherically symmetric component of global-mean-normalized, zonal-mean warming ( T sym * ) under 4 × CO2 changes weakly or becomes modestly more polar amplified from the first decade to near-equilibrium. Conversely, the antisymmetric warming component ( T asym * ) weakens with time in all models, modestly in some including FAMOUS, but effectively vanishing in others including CESM1. We explore mechanisms underlying the robust T sym * behavior with a diffusive moist energy balance model (MEBM), which given radiative feedback parameter (λ) and ocean heat uptake (O) fields diagnosed from CESM1 adequately reproduces the CESM1 T sym * and T asym * fields. In further MEBM simulations perturbing λ and O , T sym * is sensitive to their symmetric components only, and more to that of λ. A three-box, two-time-scale model fitted to FAMOUS and CESM1 reveals a curiously short Antarctic fast-response time scale in FAMOUS. In additional CESM1 simulations spanning a broader range of forcings, T sym * changes modestly across 2–16 × CO2, and T sym * in a Pliocene-like simulation is more polar amplified but likewise approximately time invariant. Determining the real-world relevance of these behaviors—which imply that a surprising amount of information about near-equilibrium polar amplification emerges within decades—merits further study. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
13. Revisiting the Role of the Water Vapor and Lapse Rate Feedbacks in the Arctic Amplification of Climate Change.
- Author
-
BEER, EMMA and EISENMAN, IAN
- Subjects
ARCTIC climate ,CLIMATE change ,CLIMATE feedbacks ,ATMOSPHERIC models ,WATER vapor ,SURFACE temperature - Abstract
The processes that contribute to the Arctic amplification of global surface warming are often described in the context of climate feedbacks. Previous studies have used a traditional feedback analysis framework to partition the regional surface warming into contributions from each feedback process. However, this partitioning can be complicated by interactions in the climate system. Here we focus instead on the physically intuitive approach of inactivating individual feedback processes during forced warming and evaluating the resulting change in the surface temperature field. We investigate this using a moist energy balance model with spatially varying feedbacks that are specified from comprehensive climate model results. We find that when warming is attributed to each feedback process by comparing how the climate would change if the process were not active, the water vapor feedback is the primary reason that the Arctic region warms more than the tropics, and the lapse rate feedback has a neutral effect on Arctic amplification by cooling the Arctic and the tropics by approximately equivalent amounts. These results are strikingly different from previous feedback analyses, which identified the lapse rate feedback as the largest contributor to Arctic amplification, with the water vapor feedback being the main opposing factor by warming the tropics more than the Arctic region. This highlights the importance of comparing different approaches of analyzing how feedbacks contribute to warming in order to build a better understanding of how feedbacks influence climate changes. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
14. Spatial Patterns, Mechanisms, and Predictability of Barents Sea Ice Change.
- Author
-
EFSTATHIOU, ELINA, ELDEVIK, TOR, ÅRTHUN, MARIUS, and LIND, SIGRID
- Subjects
SEA ice ,WINTER - Abstract
Recent Arctic winter sea ice loss has been most pronounced in the Barents Sea. Here we explore the spatial structure of Barents Sea ice change as observed over the last 40 years. The dominant mode of winter sea ice concentration interannual variability corresponds to areal change (explains 43% of spatial variance) and has a center of action in the northeastern Barents Sea where the temperate Atlantic inflow meets the wintertime sea ice. Sea ice area import and northerly wind also contribute to this "areal-change mode"; the area increases with more ice import and stronger winds from the north. The remaining 57% variance in sea ice, individually and combined, redistributes the sea ice without changing the total area. The two leading redistribution modes are a dipole of increase in sea ice concentration south of Svalbard with decrease southwest of Novaya Zemlya, and a tripole of increase in the central Barents Sea with decrease east of Svalbard and in the southeastern Barents Sea. Redistribution is mainly contributed by anomalous wind and sea ice area import. Basic predictability (i.e., the lagged response to observed drivers) is predominantly associated with the areal-change mode as influenced by temperature of the Atlantic inflow and sea ice import from the Arctic. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
15. Global Warming Pattern Formation: The Role of Ocean Heat Uptake.
- Author
-
Hu, Shineng, Xie, Shang-Ping, and Kang, Sarah M.
- Subjects
GLOBAL warming ,OCEAN ,OCEAN-atmosphere interaction ,SURFACE temperature ,HEAT flux - Abstract
This study investigates the formation mechanism of the ocean surface warming pattern in response to a doubling CO2 with a focus on the role of ocean heat uptake (or ocean surface heat flux change, ΔQnet). We demonstrate that the transient patterns of surface warming and rainfall change simulated by the dynamic ocean–atmosphere coupled model (DOM) can be reproduced by the equilibrium solutions of the slab ocean–atmosphere coupled model (SOM) simulations when forced with the DOM ΔQnet distribution. The SOM is then used as a diagnostic inverse modeling tool to decompose the CO2-induced thermodynamic warming effect and the ΔQnet (ocean heat uptake)–induced cooling effect. As ΔQnet is largely positive (i.e., downward into the ocean) in the subpolar oceans and weakly negative at the equator, its cooling effect is strongly polar amplified and opposes the CO2 warming, reducing the net warming response especially over Antarctica. For the same reason, the ΔQnet-induced cooling effect contributes significantly to the equatorially enhanced warming in all three ocean basins, while the CO2 warming effect plays a role in the equatorial warming of the eastern Pacific. The spatially varying component of ΔQnet, although globally averaged to zero, can effectively rectify and lead to decreased global mean surface temperature of a comparable magnitude as the global mean ΔQnet effect under transient climate change. Our study highlights the importance of air–sea interaction in the surface warming pattern formation and the key role of ocean heat uptake pattern. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
16. Causes of the Arctic's Lower-Tropospheric Warming Structure.
- Author
-
Kaufman, Zachary S. and Feldl, Nicole
- Subjects
ATMOSPHERIC boundary layer ,ATMOSPHERIC temperature ,TEMPERATURE inversions ,BOUNDARY layer (Aerodynamics) ,ATMOSPHERIC transport ,SEA ice - Abstract
Arctic amplification has been attributed predominantly to a positive lapse rate feedback in winter, when boundary layer temperature inversions focus warming near the surface. Predicting high-latitude climate change effectively thus requires identifying the local and remote physical processes that set the Arctic's vertical warming structure. In this study, we analyze output from the CESM Large Ensemble's twenty-first-century climate change projection to diagnose the relative influence of two Arctic heating sources, local sea ice loss and remote changes in atmospheric heat transport. Causal effects are quantified with a statistical inference method, allowing us to assess the energetic pathways mediating the Arctic temperature response and the role of internal variability across the ensemble. We find that a step-increase in latent heat flux convergence causes Arctic lower-tropospheric warming in all seasons, while additionally reducing net longwave cooling at the surface. However, these effects only lead to small and short-lived changes in boundary layer inversion strength. By contrast, a step-decrease in sea ice extent in the melt season causes, in fall and winter, surface-amplified warming and weakened boundary layer temperature inversions. Sea ice loss also enhances surface turbulent heat fluxes and cloud-driven condensational heating, which mediate the atmospheric temperature response. While the aggregate effect of many moist transport events and seasons of sea ice loss will be different than the response to hypothetical perturbations, our results nonetheless highlight the mechanisms that alter the Arctic temperature inversion in response to CO2 forcing. As sea ice declines, the atmosphere's boundary layer temperature structure is weakened, static stability decreases, and a thermodynamic coupling emerges between the Arctic surface and the overlying troposphere. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
17. Stratospheric and Tropospheric Flux Contributions to the Polar Cap Energy Budgets.
- Author
-
CARDINALE, CHRISTOPHER J., ROSE, BRIAN E. J., LANG, ANDREA L., and DONOHOE, AARON
- Subjects
POLAR climate ,ENERGY budget (Geophysics) ,ATMOSPHERIC circulation ,FLUX (Energy) ,ARCTIC climate ,POTENTIAL energy - Abstract
The flux of moist static energy into the polar regions plays a key role in the energy budget and climate of the polar regions. While usually studied from a vertically integrated perspective (F
wall ), this analysis examines its vertical structure, using the NASA-MERRA-2 reanalysis to compute climatological and anomalous fluxes of sensible, latent, and potential energy across 70°N and 65°S for the period 1980–2016. The vertical structure of the climatological flux is bimodal, with peaks in the middle to lower troposphere and middle to upper stratosphere. The near-zero flux at the tropopause defines the boundary between stratospheric (Fstrat ) and tropospheric (Ftrop ) contributions to Fwall . Especially at 70°N, Fstrat is found to be important to the climatology and variability of Fwall , contributing 20.9 W m−2 to Fwall (19% of Fwall ) during the winter and explaining 23% of the variance of Fwall . During winter, an anomalous poleward increase in Fstrat preceding a sudden stratospheric warming is followed by an increase in outgoing longwave radiation anomalies, with little influence on the surface energy budget of the Arctic. Conversely, a majority of the energy input by an anomalous poleward increase in Ftrop goes toward warming the Arctic surface. Overall, Ftrop is found to be a better metric than Fwall for evaluating the influence of atmospheric circulations on the Arctic surface climate. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
18. Arctic Sea Ice Growth in Response to Synoptic- and Large-Scale Atmospheric Forcing from CMIP5 Models.
- Author
-
LEI CAI, ALEXEEV, VLADIMIR A., and WALSH, JOHN E.
- Subjects
SEA ice ,ARCTIC oscillation ,SPECIFIC heat ,CYCLONES ,WINTER ,HIGH temperatures - Abstract
We explore the response of wintertime Arctic sea ice growth to strong cyclones and to large-scale circulation patterns on the daily scale using Earth system model output in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Acombined metrics ranking method selects three CMIP5 models that are successful in reproducing the wintertime Arctic dipole (AD) pattern. A cyclone identification method is applied to select strong cyclones in two subregions in the North Atlantic to examine their different impacts on sea ice growth. The total change of sea ice growth rate (SGR) is split into those respectively driven by the dynamic and thermodynamic atmospheric forcing. Three models reproduce the downward longwave radiation anomalies that generally match thermodynamic SGR anomalies in response to both strong cyclones and large-scale circulation patterns. For large-scale circulation patterns, the negative AD outweighs the positive Arctic Oscillation in thermodynamically inhibiting SGR in both impact area and magnitude. Despite the disagreement on the spatial distribution, the three CMIP5 models agree on the weaker response of dynamic SGR than thermodynamic SGR. As the Arctic warms, the thinner sea ice results in more ice production and smaller spatial heterogeneity of thickness, dampening the SGR response to the dynamic forcing. The higher temperature increases the specific heat of sea ice, thus dampening the SGR response to the thermodynamic forcing. In this way, the atmospheric forcing is projected to contribute less to change daily SGR in the future climate. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
19. Recent Arctic Ocean Surface Air Temperatures in Atmospheric Reanalyses and Numerical Simulations.
- Author
-
Marquardt Collow, Allison B., Cullather, Richard I., and Bosilovich, Michael G.
- Subjects
ATMOSPHERIC temperature ,SURFACE temperature ,OCEAN temperature ,COMPUTER simulation ,SEA ice ,OCEAN - Abstract
Surface air temperatures have recently increased more rapidly in the Arctic than elsewhere in the world, but large uncertainty remains in the time series and trend. Over the data-sparse sea ice zone, the retrospective assimilation of observations in numerical reanalyses has been thought to offer a possible, but challenging, avenue for adequately reproducing the historical time series. Focusing on the central Arctic Ocean, output is analyzed from 12 reanalyses with a specific consideration of two widely used products: the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim, hereafter ERA-I). Among the reanalyses considered, a trend of 0.9 K decade−1 is indicated but with an uncertainty of 6%, and a large spread in mean values. There is a partitioning among those reanalyses that use fractional sea ice cover and those that employ a threshold, which are colder in winter by an average of 2 K but agree more closely with in situ observations. For reanalyses using fractional sea ice cover, discrepancies in the ice fraction in autumn and winter explain most of the differences in air temperature values. A set of experiments using the MERRA-2 background model using MERRA-2 and ERA-I sea ice and sea surface temperature indicates significant effects of boundary condition differences on air temperatures, and a preferential warm bias inherent in the MERRA-2 model sea ice representation. Differences between experiments and reanalyses suggest the available observations apply a significant constraint on reanalysis mean temperatures. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
20. Sensitivity of Surface Temperature to Oceanic Forcing via q-Flux Green's Function Experiments. Part III: Asymmetric Response to Warming and Cooling.
- Author
-
Liu, Fukai, Lu, Jian, Huang, Yi, Leung, L. Ruby, Harrop, Bryce E., and Luo, Yiyong
- Subjects
GREEN'S functions ,SURFACE temperature ,SEA ice ,CLIMATE sensitivity ,MODES of variability (Climatology) ,GLOBAL warming - Abstract
Climate response is often assumed to be linear in climate sensitivity studies. However, by examining the surface temperature (TS) response to pairs of oceanic forcings of equal amplitude but opposite sign in a large set of local q-flux perturbation experiments with CAM5 coupled to a slab, we find strong asymmetry in TS responses to the heating and cooling forcings, indicating a strong nonlinearity intrinsic to the climate system examined. Regardless of where the symmetric forcing is placed, the cooling response to the negative forcing always exceeds the warming to the positive forcing, implying an intrinsic inclination toward cooling of our current climate. Thus, the ongoing global warming induced by increasing greenhouse gases may have already been alleviated by the asymmetric component of the response. The common asymmetry in TS response peaks in high latitudes, especially along sea ice edges, with notable seasonal dependence. Decomposition into different radiative feedbacks through a radiative kernel indicates that the asymmetry in the TS response is realized largely through lapse rate and albedo feedbacks. Further process interference experiments disabling the seasonal cycle and/or sea ice reveal that the asymmetry originates ultimately from the presence of the sea ice component and is further amplified by the seasonal cycle. The fact that a pair of opposite tropical q-flux forcings can excite very similar asymmetric response as a pair placed at 55°S strongly suggests the asymmetric response is a manifestation of an internal mode of the climate model system. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
21. Regional Arctic Amplification by a Fast Atmospheric Response to Anthropogenic Sulfate Aerosol Forcing in China.
- Author
-
Kim, Minjoong J., Yeh, Sang-Wook, Park, Rokjin J., Son, Seok-Woo, Moon, Byung-Kwon, Kim, Byung-Gon, Kim, Jae-Jin, and Kim, Sang-Woo
- Subjects
SULFATE aerosols ,OCEAN temperature ,CARBONACEOUS aerosols ,ATMOSPHERIC circulation ,ATMOSPHERIC models ,WATER vapor - Abstract
It is known that an increase of water vapor over the Arctic is one of most plausible causes driving Arctic amplification. However, debate continues with regard to the explanation of the underlying mechanisms driving the increase of moisture over the Arctic region in the observations. Here, we used the Community Atmosphere Model with prescribed sea surface temperature along with reanalysis datasets to examine the role of fast atmospheric responses to the increase of anthropogenic sulfate aerosol concentrations in China. We found that it plays an additive role in moisture transport from the midlatitudes, resulting in warming of the Arctic region, especially around the Barents–Kara Seas. Specifically, sulfate aerosol forcing in China reduces the meridional temperature gradient and leads to the increase of moisture transport into the Arctic by altering atmospheric circulation. The resulting increase of moisture then leads to surface warming through the enhancement of the downwelling longwave radiation. This implies that Arctic warming around the Barents–Kara Seas has been accelerated, at least in part, by a fast atmospheric response to anthropogenic sulfate aerosol emissions in China in the recent past. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
22. On the Role of the Atmospheric Energy Transport in 2 × CO2–Induced Polar Amplification in CESM1.
- Author
-
Graversen, Rune G. and Langen, Peter L.
- Subjects
ATMOSPHERIC transport ,GLOBAL warming ,GREENHOUSE effect ,ENVIRONMENTAL engineering ,ALBEDO - Abstract
A doubling of the atmospheric CO2 content leads to global warming that is amplified in the polar regions. The CO2 forcing also leads to a change of the atmospheric energy transport. This transport change affects the local warming induced by the CO2 forcing. Using the Community Earth System Model (CESM), the direct response to the transport change is investigated. Divergences of the transport change associated with a CO2 doubling are implemented as a forcing in the 1 × CO2 preindustrial control climate. This forcing is zero in the global mean. In response to a CO2 increase in CESM, the northward atmospheric energy transport decreases at the Arctic boundary. However, the transport change still leads to a warming of the Arctic. This is due to a shift between dry static and latent transport components, so that although the dry static transport decreases, the latent transport increases at the Arctic boundary, which is consistent with other model studies. Because of a greenhouse effect associated with the latent transport, the cooling caused by a change of the dry static component is more than compensated for by the warming induced by the change of the latent transport. Similar results are found for the Antarctic region, but the transport change is larger in the Southern Hemisphere than in its northern counterpart. As a consequence, the Antarctic region warms to the extent that this warming leads to global warming that is likely enhanced by the surface albedo feedback associated with considerable ice retreat in the Southern Hemisphere. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
23. Meridional Atmospheric Heat Transport Constrained by Energetics and Mediated by Large-Scale Diffusion.
- Author
-
Armour, Kyle C., Siler, Nicholas, Donohoe, Aaron, and Roe, Gerard H.
- Subjects
ATMOSPHERIC circulation ,HEAT transfer ,MERIDIONAL overturning circulation ,ATMOSPHERIC models ,GLOBAL warming - Abstract
Meridional atmospheric heat transport (AHT) has been investigated through three broad perspectives: a dynamic perspective, linking AHT to the poleward flux of moist static energy (MSE) by atmospheric motions; an energetic perspective, linking AHT to energy input to the atmosphere by top-of-atmosphere radiation and surface heat fluxes; and a diffusive perspective, representing AHT in terms downgradient energy transport. It is shown here that the three perspectives provide complementary diagnostics of meridional AHT and its changes under greenhouse gas forcing. When combined, the energetic and diffusive perspectives offer prognostic insights: anomalous AHT is constrained to satisfy the net energetic demands of radiative forcing, radiative feedbacks, and ocean heat uptake; in turn, the meridional pattern of warming must adjust to produce those AHT changes, and does so approximately according to diffusion of anomalous MSE. The relationship between temperature and MSE exerts strong constraints on the warming pattern, favoring polar amplification. These conclusions are supported by use of a diffusive moist energy balance model (EBM) that accurately predicts zonal-mean warming and AHT changes within comprehensive general circulation models (GCMs). A dry diffusive EBM predicts similar AHT changes in order to satisfy the same energetic constraints, but does so through tropically amplified warming—at odds with the GCMs' polar-amplified warming pattern. The results suggest that polar-amplified warming is a near-inevitable consequence of a moist, diffusive atmosphere's response to greenhouse gas forcing. In this view, atmospheric circulations must act to satisfy net AHT as constrained by energetics. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
24. Revisiting the Linkages between the Variability of Atmospheric Circulations and Arctic Melt-Season Sea Ice Cover at Multiple Time Scales.
- Author
-
Yu, Lejiang, Sun, Bo, Zhong, Shiyuan, Zhou, Mingyu, and Lenschow, Donald H.
- Subjects
SEA ice ,ICE sheet thawing ,ATLANTIC multidecadal oscillation ,MOISTURE measurement - Abstract
The sharp decline of Arctic sea ice in recent decades has captured the attention of the climate science community. A majority of climate analyses performed to date have used monthly or seasonal data. Here, however, we analyze daily sea ice data for 1979–2016 using the self-organizing map (SOM) method to further examine and quantify the contributions of atmospheric circulation changes to the melt-season Arctic sea ice variability. Our results reveal two main variability modes: the Pacific sector mode and the Barents and Kara Seas mode, which together explain about two-thirds of the melt-season Arctic sea ice variability and more than 40% of its trend for the study period. The change in the frequencies of the two modes appears to be associated with the phase shift of the Pacific decadal oscillation (PDO) and the Atlantic multidecadal oscillation (AMO). The PDO and AMO trigger anomalous atmospheric circulations, in particular, the Greenland high and the North Atlantic Oscillation and anomalous warm and cold air advections into the Arctic Ocean. The changes in surface air temperature, lower-atmosphere moisture, and downwelling longwave radiation associated with the advection are consistent with the melt-season sea ice anomalies observed in various regions of the Arctic Ocean. These results help better understand the predictability of Arctic sea ice on multiple (synoptic, intraseasonal, and interannual) time scales. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
25. The Role of the Nonlinearity of the Stefan–Boltzmann Law on the Structure of Radiatively Forced Temperature Change.
- Author
-
Henry, Matthew and Merlis, Timothy M.
- Subjects
GLOBAL temperature changes ,BLACKBODY radiation ,ATMOSPHERIC temperature ,GENERAL circulation model ,GLOBAL warming - Abstract
The Stefan–Boltzmann law governs the temperature dependence of the blackbody emission of radiation: . A consequence of this nonlinearity is that a cold object needs a greater increase in temperature than a hot object in order to reach the same increase in radiation emitted. Therefore, this nonlinearity potentially has an impact on the structure of radiatively forced atmospheric temperature change in both the horizontal and vertical directions. For example, it has previously been argued to be a cause of polar amplification (PA) of surface air warming. Here, the role of this nonlinearity is investigated by 1) assessing the magnitude of its effect on PA compared to spatial variations in CO2's radiative forcing for Earth's atmosphere and 2) linearizing in a gray radiation atmospheric general circulation model (GCM) with an interactive hydrological cycle. Estimates for Earth's atmosphere show that the combination of the Planck feedback and forcing from CO2 would produce a tropically amplified warming if they were the only means of changing the Earth's energy balance. Contrary to expectations, climate change simulations with linearized radiation do not have reduced polar amplification of surface air warming relative to the standard GCM configuration. However, simulations with linearized radiation consistently show less warming in the upper troposphere and more warming in the lower troposphere across latitudes. The lapse rate feedbacks from pure radiative and radiative–convective configurations of the model are used to show that the "cold-altitudes-warm-more" effect of the nonlinearity carries across this model hierarchy. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
26. Patterns, Impacts, and Future Projections of Summer Variability in the Arctic from CMIP5 Models.
- Author
-
Cai, Lei, Alexeev, Vladimir A., Walsh, John E., and Bhatt, Uma S.
- Subjects
MODES of variability (Climatology) ,ARCTIC oscillation ,PRECIPITATION (Chemistry) ,ATMOSPHERIC temperature ,CLIMATOLOGY - Abstract
Thirty models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) are evaluated for their performances in reproducing two summertime atmospheric circulation patterns in the Arctic: the Arctic Oscillation (AO) and Arctic dipole (AD). The reference AO and AD are extracted from the ERA-Interim dataset (1979–2016). Model evaluation is conducted during the historical period (1901–2005). Models are ranked by a combined metrics approach based on two pattern correlation coefficients (PCCs) and two explained variances for the AO and AD, respectively. In the projected period (2006–2100), most models produce a positive trend for the AO index and a negative trend for the AD index in summer. The models ranked higher based on the combined metrics ranking show greater consistency and smaller values in the magnitudes of trends of AO and AD than the lower-ranked ones. The projected trends in the AO and AD contribute to a slight increase, if not a decrease, of the air temperature and an acceleration of precipitation increase in the twenty-first century over Arctic Alaska, which is the reverse of over the Barents and Kara Seas. Changes in the AO and AD are relatively minor contributing factors to the projected temperature and precipitation changes in the Arctic, among which the changes in the AD play a bigger role than those in the AO. The summer AO and AD have a stronger impact on the spatial asymmetry of the precipitation field than on the air temperature field. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
27. Suppression of Cold Weather Events over High-Latitude Continents in Warm Climates.
- Author
-
Hu, Zeyuan, Cronin, Timothy W., and Tziperman, Eli
- Subjects
CLIMATOLOGY ,OCEAN temperature ,ATMOSPHERIC models ,CLIMATE change ,GLOBAL warming - Abstract
Recent studies, using Lagrangian single-column atmospheric models, have proposed that in warmer climates more low clouds would form as maritime air masses advect into Northern Hemisphere high-latitude continental interiors during winter (DJF). This increase in low cloud amount and optical thickness could reduce surface radiative cooling and suppress Arctic air formation events, partly explaining both the warm winter high-latitude continental interior climate and frost-intolerant species found there during the Eocene and the positive lapse-rate feedback in future Arctic climate change scenarios. Here the authors examine the robustness of this low-cloud mechanism in a three-dimensional atmospheric model that includes large-scale dynamics. Different warming scenarios are simulated under prescribed CO2 and sea surface temperature, and the sensitivity of winter temperatures and clouds over high-latitude continental interior to mid- and high-latitude sea surface temperatures is examined. Model results show that winter 2-m temperatures on extreme cold days increase about 50% faster than the winter mean temperatures and the prescribed SST. Low cloud fraction and surface longwave cloud radiative forcing also increase in both the winter mean state and on extreme cold days, consistent with previous Lagrangian air-mass studies, but with cloud fraction increasing for different reasons than proposed by previous work. At high latitudes, the cloud longwave warming effect dominates the shortwave cooling effect, and the net cloud radiative forcing at the surface tends to warm high-latitude land but cool midlatitude land. This could contribute to the reduced meridional temperature gradient in warmer climates and help explain the greater warming of winter cold extremes relative to winter mean temperatures. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
28. Time Evolution of the Cloud Response to Moisture Intrusions into the Arctic during Winter.
- Author
-
Liu, Yinghui, Key, Jeffrey R., Vavrus, Steve, and Woods, Cian
- Subjects
RADIATION ,HUMIDITY ,MOISTURE measurement ,HEAT flux ,CLOUDS - Abstract
Northward fluxes of moisture and sensible heat into the Arctic affect the atmospheric stability, sea ice and snow cover, clouds, and surface energy budget. Intense moisture fluxes into the Arctic are called moisture intrusions; some can lead to basinwide increases in downward longwave radiation (DLR) at the surface, called downward infrared (IR) events. Using the ERA-Interim reanalysis from 1990 to 2016, this study investigated the time evolution of cloud amount and cloud properties and their impact on the surface radiation fluxes in response to Arctic moisture intrusions and downward IR events during winter for better understanding of the Arctic moisture intrusions. A composite analysis revealed several key features: moisture intrusions produce more clouds and higher cloud liquid and ice water content; positive cloud amount anomalies can persist for over 10 days over the Arctic Ocean during downward IR events; positive high-level and middle-level cloud anomalies are evident in the early stage, and positive low-level cloud anomalies are evident in the late stage. Greater clear-sky DLR and longwave cloud radiative forcing (CRF) over the Arctic Ocean accompany the greater all-sky DLR during the downward IR events. Greater clear-sky DLR can be attributed to higher air temperatures and higher total column water vapor, while greater longwave CRF is the result of larger cloud amount and cloud water content. Longwave CRF anomalies account for approximately 40% of the all-sky DLR anomalies. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
29. Sensitivity of Surface Temperature to Oceanic Forcing via q-Flux Green’s Function Experiments. Part II: Feedback Decomposition and Polar Amplification.
- Author
-
Liu, Fukai, Lu, Jian, Garuba, Oluwayemi A., Huang, Yi, Leung, L. Ruby, Harrop, Bryce E., and Luo, Yiyong
- Subjects
SURFACE temperature ,GREEN'S functions ,OCEAN temperature ,ATMOSPHERIC circulation - Abstract
A large set of Green’s function-type experiments is performed with q-flux forcings mimicking the effects of the ocean heat uptake (OHU) to examine the global surface air temperature (SAT) sensitivities to the location of the forcing. The result of the experiments confirms the earlier notion derived from experiments with different model complexities that the global mean SAT is far more sensitive to the oceanic forcing from high latitudes than the tropics. Remarkably, no matter in which latitude the q-flux forcings are placed, the SAT response is always characterized by a feature of polar amplification, implicating that it is intrinsic to our climate system. Considerable zonal asymmetry is also present in the efficacy of the tropical OHU, with the tropical eastern Pacific being much more efficient than the Indian Ocean and tropical Atlantic in driving global SAT warming by exciting the leading neutral mode of the SAT that projects strongly onto global mean warming. Using a radiative kernel, feedback analysis is also conducted to unravel the underlying processes responsible for the spatial heterogeneity in the global OHU efficacy, the polar amplification structures, and the tropical altruism of sharing the warmth with remote latitudes. Warming “altruism” for a q flux at a given latitude is also investigated in terms of the ratio of the induced remote latitudes versus the directly forced local warming. It is found that the tropics are much more altruistic than higher latitudes because of the high-energy transport efficiency of the Hadley circulation. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
30. Simple Estimates of Polar Amplification in Moist Diffusive Energy Balance Models.
- Author
-
Merlis, Timothy M. and Henry, Matthew
- Subjects
THERMODYNAMIC functions ,CIRCULATION models ,CLIMATOLOGY ,GLOBAL warming ,ENERGY balance mass spectrometers - Abstract
Diffusive energy balance models (EBMs) that use moist static energy, rather than temperature, as the thermodynamic variable to determine the energy transport provide an idealized framework to understand the pattern of radiatively forced surface warming. These models have a polar amplified warming pattern that is quantitatively similar to general circulation model simulations. Even without surface albedo changes or other spatially varying feedbacks, they simulate polar amplification that results from increased poleward energy transport with warming. Here, two estimates for polar amplification are presented that do not require numerical solution of the EBM governing equation. They are evaluated relative to the results of numerical moist EBM solutions. One estimate considers only changes in a moist thermodynamic quantity (assuming that the increase in energy transport results in a spatially uniform change in moist static energy in the warmed climate) and has more polar amplification than the EBM solution. The other estimate uses a new solution of a truncated form of the moist EBM equation, which allows for a temperature change that is consistent with both the dry and latent energy transport changes, as well as radiative changes. The truncated EBM solution provides an estimate for polar amplification that is nearly identical to that of the numerical EBM solution and only depends on the EBM parameters and climatology of temperature. This solution sheds light on the dependence of polar amplification on the climatological temperature distribution and offers an estimate of the residual polar warming in solar radiation management geoengineered climates. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
31. Sensitivity of Surface Temperature to Oceanic Forcing via q-Flux Green's Function Experiments. Part I: Linear Response Function.
- Author
-
Liu, Fukai, Lu, Jian, Garuba, Oluwayemi, Leung, L. Ruby, Luo, Yiyong, and Wan, Xiuquan
- Subjects
SURFACE temperature ,OCEAN temperature ,ENVIRONMENTAL degradation ,OCEAN dynamics ,CONVERGENT evolution - Abstract
This paper explores the use of the linear response function (LRF) to relate the mean sea surface temperature (SST) response to prescribed ocean heat convergence (q flux) forcings. Two methods for constructing the LRF based on the fluctuation-dissipation theorem (FDT) and Green's function (GRF) are examined. A 900-yr preindustrial simulation by the Community Earth System Model coupled with a slab ocean model (CESM-SOM) is used to estimate the LRF using FDT. For GRF, 106 pairs of CESM-SOM simulations with warm and cold q-flux patches are performed. FDT is found to have some skill in estimating the SST response to a q-flux forcing when the local SST response is strong, but it fails in inverse estimation of the q-flux forcing for a given SST pattern. In contrast, GRF is shown to be reasonably accurate in estimating both SST response and q-flux forcing. Possible degradation in FDT may be attributed to insufficient data sampling, significant departure of the SST distribution from Gaussianity, and the nonnormality of the constructed operator. The GRF-based LRF is then used to (i) generate a global surface temperature sensitivity map that shows the q-flux forcing in higher latitudes to be 3-4 times more effective than low latitudes in producing global surface warming, and (ii) identify the most excitable SST mode (neutral vector) that shows marked resemblance to the interdecadal Pacific oscillation (IPO). The latter discovery suggests that the IPO-like fluctuation exists in the absence of the coupling to the ocean dynamics. Coupling to the ocean dynamics in CESM, on the other hand, only enhances the spectral power of the IPO at interannual time scales. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
32. Contrasting Local and Remote Impacts of Surface Heating on Polar Warming and Amplification.
- Author
-
Park, Kiwoong, Kang, Sarah M., Kim, Doyeon, Stuecker, Malte F., and Jin, Fei-Fei
- Subjects
EARTH (Planet) ,GREENHOUSE gas mitigation ,TROPOSPHERE ,GLOBAL warming ,WAVE amplification - Abstract
The polar region has been one of the fastest warming places on Earth in response to greenhouse gas (GHG) forcing. Two distinct processes contribute to the observed warming signal: (i) local warming in direct response to the GHG forcing and (ii) the effect of enhanced poleward heat transport from low latitudes. A series of aquaplanet experiments, which excludes the surface albedo feedback, is conducted to quantify the relative contributions of these two physical processes to the polar warming magnitude and degree of amplification relative to the global mean. The globe is divided into zonal bands with equal area in eight experiments. For each of these, an external heating is prescribed beneath the slab ocean layer in the respective forcing bands. The summation of the individual temperature responses to each local heating in these experiments is very similar to the response to a globally uniform heating. This allows the authors to decompose the polar warming and amplification signal into the effects of local and remote heating. Local polar heating that induces surface-trapped warming due to the large tropospheric static stability in this region accounts for about half of the polar surface warming. Cloud radiative effects act to enhance this local contribution. In contrast, remote nonpolar heating induces a robust polar warming pattern that features a midtropospheric peak, regardless of the meridional location of the forcing. Among all remote forcing experiments, the deep tropical forcing case contributes most to the polar-amplified surface warming pattern relative to the global mean, while the high- latitude forcing cases contribute most to enhancing the polar surface warming magnitude. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
33. Local and External Moisture Sources for the Arctic Warming over the Barents-Kara Seas.
- Author
-
Zhong, Linhao, Hua, Lijuan, and Luo, Dehai
- Subjects
ATMOSPHERIC water vapor ,GLOBAL warming ,SEA ice ,EARTH temperature ,EVAPORATION (Meteorology) - Abstract
Water vapor is critical to Arctic sea ice loss and surface air warming, particularly in winter. Whether the local process or poleward transport from lower latitudes can explain the Arctic warming is still a controversial issue. In this work, a hydrological tool, a dynamical recycling model (DRM) based on time-backward Lagrangian moisture tracking, is applied to quantitatively evaluate the relative contributions of local evaporation and external sources to Barents-Kara Seas (BKS) moisture in winter during 1979-2015. On average, the local and external moistures explain 35.4% and 57.3% of BKS moisture, respectively. The BKS, Norwegian Sea, and midlatitude North Atlantic are the three major sources and show significant increasing trends of moisture contribution. The local moisture contribution correlates weakly to downward infrared radiation (IR) but significantly to sea ice variation, which suggests that the recent-decade increase of local moisture contribution is only a manifestation of sea ice melting. In contrast, the external moisture contribution significantly correlates to both downward IR and sea ice variation, thus suggesting that meridional moisture transport mainly explains the recent BKS warming. The moisture contributions due to different sources are governed by distinct circulation patterns. The negative Arctic Oscillation-like pattern suppresses external moisture but favors local evaporation. In the case of dominant external moisture, a well-organized wave train spanning from across the midlatitude Atlantic to mid-high-latitude Eurasia has the mid-high-latitude components similar to a positive-phase North Atlantic Oscillation with a Ural blocking to the east. Moreover, the meridional shift of the wave train pathway and the spatial scale of the wave train anomalies determine the transport passage and strength of the major external moisture sources. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
34. Comparison of Mechanisms for Low-Frequency Variability of Summer Arctic Sea Ice in Three Coupled Models.
- Author
-
Li, Dawei, Zhang, Rong, and Knutson, Thomas
- Subjects
PRECIPITATION variability ,SEA ice ,ATMOSPHERIC models ,MATHEMATICAL models of thermodynamics ,HEAT transfer ,ARCTIC climate - Abstract
In this study the mechanisms for low-frequency variability of summer Arctic sea ice are analyzed using long control simulations from three coupled models (GFDL CM2.1, GFDL CM3, and NCAR CESM). Despite different Arctic sea ice mean states, there are many robust features in the response of low-frequency summer Arctic sea ice variability to the three key predictors (Atlantic and Pacific oceanic heat transport into the Arctic and the Arctic dipole) across all three models. In all three models, an enhanced Atlantic (Pacific) heat transport into the Arctic induces summer Arctic sea ice decline and surface warming, especially over the Atlantic (Pacific) sector of the Arctic. A positive phase of the Arctic dipole induces summer Arctic sea ice decline and surface warming on the Pacific side, and opposite changes on the Atlantic side. There is robust Bjerknes compensation at low frequency, so the northward atmospheric heat transport provides a negative feedback to summer Arctic sea ice variations. The influence of the Arctic dipole on summer Arctic sea ice extent is more (less) effective in simulations with less (excessive) climatological summer sea ice in the Atlantic sector. The response of Arctic sea ice thickness to the three key predictors is stronger in models that have thicker climatological Arctic sea ice. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
35. Contributions of Climate Feedbacks to Changes in Atmospheric Circulation.
- Author
-
Ceppi, Paulo and Shepherd, Theodore G.
- Subjects
MATHEMATICAL models of atmospheric circulation ,CLIMATE feedbacks ,CARBON dioxide & the environment ,RADIATIVE forcing ,CLOUD dynamics ,BAROCLINICITY - Abstract
The projected response of the atmospheric circulation to the radiative changes induced by CO
2 forcing and climate feedbacks is currently uncertain. In this modeling study, the impact of CO2 -induced climate feedbacks on changes in jet latitude and speed is assessed by imposing surface albedo, cloud, and water vapor feedbacks as if they were forcings in two climate models, CAM4 and ECHAM6. The jet response to radiative feedbacks can be broadly interpreted through changes in midlatitude baroclinicity. Clouds enhance baroclinicity, favoring a strengthened, poleward-shifted jet; this is mitigated by surface albedo changes, which have the opposite effect on baroclinicity and the jet, while water vapor has opposing effects on upper- and lower-level baroclinicity with little net impact on the jet. Large differences between the CAM4 and ECHAM6 responses illustrate how model uncertainty in radiative feedbacks causes a large spread in the baroclinicity response to CO2 forcing. Across the CMIP5 models, differences in shortwave feedbacks by clouds and albedo are a dominant contribution to this spread. Forcing CAM4 with shortwave cloud and albedo feedbacks from a representative set of CMIP5 models yields a wide range of jet responses that strongly correlate with the meridional gradient of the anomalous shortwave heating and the associated baroclinicity response. Differences in shortwave feedbacks statistically explain about 50% of the intermodel spread in CMIP5 jet shifts for the set of models used, demonstrating the importance of constraining radiative feedbacks for accurate projections of circulation changes. [ABSTRACT FROM AUTHOR]- Published
- 2017
- Full Text
- View/download PDF
36. Atmospheric Eddies Mediate Lapse Rate Feedback and Arctic Amplification.
- Author
-
Feldl, Nicole, Anderson, Bruce T., and Bordoni, Simona
- Subjects
ATMOSPHERIC diffusion ,CLIMATE feedbacks ,ATMOSPHERIC circulation ,FLUX (Energy) ,SURFACE temperature - Abstract
Projections of amplified climate change in the Arctic are attributed to positive feedbacks associated with the retreat of sea ice and changes in the lapse rate of the polar atmosphere. Here, a set of idealized aquaplanet experiments are performed to understand the coupling between high-latitude feedbacks, polar amplification, and the large-scale atmospheric circulation. Results are compared to CMIP5. Simulated climate responses are characterized by a wide range of polar amplification (from none to nearly 15-K warming, relative to the low latitudes) under CO
2 quadrupling. Notably, the high-latitude lapse rate feedback varies in sign among the experiments. The aquaplanet simulation with the greatest polar amplification, representing a transition from perennial to ice-free conditions, exhibits a marked decrease in dry static energy flux by transient eddies. Partly compensating for the reduced poleward energy flux is a contraction of the Ferrel cell and an increase in latent energy flux. Enhanced eddy energy flux is consistent with the upper-tropospheric warming that occurs in all experiments and provides a remote influence on the polar lapse rate feedback. The main conclusions are that (i) given a large, localized change in meridional surface temperature gradient, the midlatitude circulation exhibits strong compensation between changes in dry and latent energy fluxes, and (ii) atmospheric eddies mediate the nonlinear interaction between surface albedo and lapse rate feedbacks, rendering the high-latitude lapse rate feedback less positive than it would be otherwise. Consequently, the variability of the circulation response, and particularly the partitioning of energy fluxes, offers insights into understanding the magnitude of polar amplification. [ABSTRACT FROM AUTHOR]- Published
- 2017
- Full Text
- View/download PDF
37. Increased Quasi Stationarity and Persistence of Winter Ural Blocking and Eurasian Extreme Cold Events in Response to Arctic Warming. Part I: Insights from Observational Analyses.
- Author
-
Yao, Yao, Luo, Dehai, Dai, Aiguo, and Simmonds, Ian
- Subjects
GLOBAL warming ,HEAT flux ,MERIDIONAL winds ,TEMPERATURE inversions - Abstract
Part I of this study examines the relationship among winter cold anomalies over Eurasia, Ural blocking (UB), and the background conditions associated with Arctic warming over the Barents and Kara Seas (BKS) using reanalysis data. It is found that the intensity, persistence, and occurrence region of UB-related Eurasian cold anomalies depend strongly on the strength and vertical shear (VS) of the mean westerly wind (MWW) over mid-high-latitude Eurasia related to BKS warming. Observational analysis reveals that during 1951-2015 UB days are 64% (54%) more frequent during weak MWW (VS) winters, with 26.9 (28.4) days per winter, than during strong MWW (VS) winters. During weak MWW or VS winters, as frequently observed during 2000-15, persistent and large UB-related warming is seen over the BKS together with large and widespread midlatitude Eurasian cold anomalies resulting from increased quasi stationarity and persistence of the UB. By contrast, when the MWW or VS is strong as frequently observed during 1979-99, the cold anomaly is less intense and persistent and confined to a narrow region of Europe because of a rapid westward movement of the strong UB. For this case, the BKS warming is relatively weak and less persistent. The midlatitude cold anomalies are maintained primarily by reduced downward infrared radiation (IR), while the surface heat fluxes, IR, and advection all contribute to the BKS warming. Thus, the large BKS warming since 2000 weakens the meridional temperature gradient, MWW, and VS, which increases quasi stationarity and persistence of the UB (rather than its amplitude) and then leads to more widespread Eurasian cold events and further enhances the BKS warming. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
38. Emergent Constraints in Climate Projections: A Case Study of Changes in High-Latitude Temperature Variability.
- Author
-
Borodina, Aleksandra, Fischer, Erich M., and Knutti, Reto
- Subjects
SURFACE temperature ,PRECIPITATION variability ,METRIC spaces ,MATHEMATICAL models - Abstract
Climate projections from phase 5 of the Coupled Model Intercomparison Project (CMIP5) ensemble show a decrease in interannual surface temperature variability over high latitudes with a large intermodel spread, in particular over the areas of sea ice retreat. Here relationships are found between the models' present-day performance in sea ice-related metrics and future changes in temperature variability. These relations, so-called emergent constraints, can produce ensembles of models calibrated with present-day observations with a narrower spread across their members than across the full ensemble. The underlying assumption is that models in better agreement with observations or reanalyses in a carefully selected metric probably have a more realistic representation of local processes, and therefore are more reliable for projections. Thus, the reliability of this method depends on the availability of high-quality observations or reanalyses. This work represents a step toward formalization of the emergent constraints framework, as so far there is no consensus on how the constraints should be best implemented. The authors quantify the reduction in spread from emerging constraints for various metrics and their combinations, different emission scenarios, and seasons. Some of the general features of emerging constraints are discussed, and how to effectively aggregate information across metrics and seasons to achieve the largest reduction in model spread. It is demonstrated, based on the case of temperature variability, that a robust constraint can be obtained by combining relevant metrics across all seasons. Such a constraint results in a strongly reduced spread across model projections, which is consistent with a process understanding of variability changes due to sea ice retreat. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
39. Influence of the Arctic Oscillation on the Vertical Distribution of Wintertime Ozone in the Stratosphere and Upper Troposphere over the Northern Hemisphere.
- Author
-
JIANKAI ZHANG, FEI XIE, WENSHOU TIAN, YUANYUAN HAN, KEQUAN ZHANG, YULEI QI, CHIPPERFIELD, MARTYN, WUHU FENG, JINLONG HUANG, and JIANCHUAN SHU
- Subjects
WINTER ,STRATOSPHERE ,ARCTIC oscillation ,OZONE layer depletion ,OCEAN-atmosphere interaction ,MODES of variability (Climatology) - Abstract
The influence of the Arctic Oscillation (AO) on the vertical distribution of stratospheric ozone in theNorthern Hemisphere in winter is analyzed using observations and an offline chemical transport model. Positive ozone anomalies are found at low latitudes (08–308N) and there are three negative anomaly centers in the northern midand high latitudes during positive AO phases. The negative anomalies are located in the Arctic middle stratosphere (;30 hPa; 708–908N),Arctic upper troposphere–lower stratosphere (UTLS; 150–300 hPa, 708–908N), and midlatitude UTLS (70–300 hPa, 308–608N). Further analysis shows that anomalous dynamical transport related to AO variability primarily controls these ozone changes. During positive AO events, positive ozone anomalies between 08 and 308N at 50–150 hPa are related to the weakened meridional transport of the Brewer–Dobson circulation (BDC) and enhanced eddy transport. The negative ozone anomalies in the Arcticmiddle stratosphere are also caused by the weakened BDC, while the negative ozone anomalies in the Arctic UTLS are caused by the increased tropopause height, weakened BDC vertical transport, weaker exchange between the midlatitudes and the Arctic, and enhanced ozone depletion via heterogeneous chemistry. The negative ozone anomalies in the midlatitude UTLS are mainly due to enhanced eddy transport from the midlatitudes to the latitudes equatorward of 308N, while the transport of ozone-poor air from the Arctic to the midlatitudes makes a minor contribution. Interpreting AO-related variability of stratospheric ozone, especially in the UTLS, would be helpful for the prediction of tropospheric ozone variability caused by the AO. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
40. Ural Blocking as an Amplifier of the Arctic Sea Ice Decline in Winter.
- Author
-
TINGTING GONG and DEHAI LUO
- Subjects
WINTER ,SEA ice ,INFRARED radiation ,OCEAN temperature ,ELECTROMAGNETIC waves ,NORTH Atlantic oscillation ,MODES of variability (Climatology) - Abstract
In this paper, the lead–lag relationship between the Arctic sea ice variability over the Barents–Kara Sea (BKS) and Ural blocking (UB) in winter (DJF) ranging from 1979/80 to 2011/12 is examined. It is found that in a regressed DJF-mean field an increased UB frequency (days) corresponds to an enhanced sea ice decline over the BKS, while the high sea surface temperature over the BKS is accompanied by a significant Arctic sea ice reduction. Lagged daily regression and correlation reveal that the growth and maintenance of the UB that is related to the positive North Atlantic Oscillation (NAO
+ ) through the negative east Atlantic/west Russia (EA/WR- ) wave train is accompanied by an intensified negative BKS sea ice anomaly, and the BKS sea ice reduction lags the UB pattern by about four days. Because the intensified UB pattern occurs together with enhanced downward infrared radiation (IR) associated with the intensified moisture flux convergence and total column water over the BKS, the UB pattern contributes significantly to the BKS sea ice decrease on a time scale of weeks through intensified positive surface air temperature (SAT) anomalies resulting from enhanced downward IR. It is also found that the BKS sea ice decline can persistently maintain even when the UB has disappeared, thus indicating that the UB pattern is an important amplifier of the BKS sea ice reduction. Moreover, it is demonstrated that the EA/WR- wave train formed by the combined NAO+ and UB patterns is closely related to the amplified warming over the BKS through the strengthening (weakening) of mid-to-high-latitude westerly wind in the North Atlantic (Eurasia). [ABSTRACT FROM AUTHOR]- Published
- 2017
- Full Text
- View/download PDF
41. Coupled High-Latitude Climate Feedbacks and Their Impact on Atmospheric Heat Transport.
- Author
-
FELDL, NICOLE, BORDONI, SIMONA, and MERLIS, TIMOTHY M.
- Subjects
HEAT transfer ,EFFECT of human beings on weather ,THERMAL analysis ,ENERGY conversion ,CLIMATE feedbacks - Abstract
The response of atmospheric heat transport to anthropogenic warming is determined by the anomalous meridional energy gradient. Feedback analysis offers a characterization of that gradient and hence reveals how uncertainty in physical processes may translate into uncertainty in the circulation response. However, individual feedbacks do not act in isolation. Anomalies associated with one feedback may be compensated by another, as is the case for the positive water vapor and negative lapse rate feedbacks in the tropics. Here a set of idealized experiments are performed in an aquaplanet model to evaluate the coupling between the surface albedofeedback and other feedbacks, including the impact on atmospheric heat transport. In the tropics, the dynamical response manifests as changes in the intensity and structure of the overturning Hadley circulation. Only half of the range of Hadley cell weakening exhibited in these experiments is found to be attributable to imposed, systematic variations in the surface albedofeedback. Changes in extratropical clouds that accompany the albedo changes explain the remaining spread. The feedback-driven circulation changes are compensated by eddy energy flux changes, which reduce the overall spread among experiments. These findings have implications for the efficiency with which the climate system, including tropical circulation and the hydrological cycle, adjusts to high-latitude feedbacks over climate states that range from perennial or seasonal ice to ice-free conditions in the Arctic. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
42. The Role of Moist Intrusions in Winter Arctic Warming and Sea Ice Decline.
- Author
-
Woods, Cian and Caballero, Rodrigo
- Subjects
SEA ice ,MARINE geophysics ,WINTER sports ,GEOPHYSICS - Abstract
This paper examines the trajectories followed by intense intrusions of moist air into the Arctic polar region during autumn and winter and their impact on local temperature and sea ice concentration. It is found that the vertical structure of the warming associated with moist intrusions is bottom amplified, corresponding to a transition of local conditions from a 'cold clear' state with a strong inversion to a 'warm opaque' state with a weaker inversion. In the marginal sea ice zone of the Barents Sea, the passage of an intrusion also causes a retreat of the ice margin, which persists for many days after the intrusion has passed. The authors find that there is a positive trend in the number of intrusion events crossing 70°N during December and January that can explain roughly 45% of the surface air temperature and 30% of the sea ice concentration trends observed in the Barents Sea during the past two decades. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
43. Surface Arctic Amplification Factors in CMIP5 Models: Land and Oceanic Surfaces and Seasonality.
- Author
-
Laîné, Alexandre, Yoshimori, Masakazu, and Abe-Ouchi, Ayako
- Subjects
LAND surface temperature ,ATMOSPHERIC temperature ,GLOBAL warming ,TROPOSPHERIC circulation ,SEASONAL temperature variations ,GREENHOUSE gas mitigation ,GREENHOUSE gases - Abstract
Arctic amplification (AA) is a major characteristic of observed global warming, yet the different mechanisms responsible for it and their quantification are still under investigation. In this study, the roles of different factors contributing to local surface warming are quantified using the radiative kernel method applied at the surface after 100 years of global warming under a representative concentration pathway 4.5 (RCP4.5) scenario simulated by 32 climate models from phase 5 of the Coupled Model Intercomparison Project. The warming factors and their seasonality for land and oceanic surfaces were investigated separately and for different domains within each surface type where mechanisms differ. Common factors contribute to both land and oceanic surface warming: tropospheric-mean atmospheric warming and greenhouse gas increases (mostly through water vapor feedback) for both tropical and Arctic regions, nonbarotropic warming and surface warming sensitivity effects (negative in the tropics, positive in the Arctic), and warming cloud feedback in the Arctic in winter. Some mechanisms differ between land and oceanic surfaces: sensible and latent heat flux in the tropics, albedo feedback peaking at different times of the year in the Arctic due to different mean latitudes, a very large summer energy uptake and winter release by the Arctic Ocean, and a large evaporation enhancement in winter over the Arctic Ocean, whereas the peak occurs in summer over the ice-free Arctic land. The oceanic anomalous energy uptake and release is further studied, suggesting the primary role of seasonal variation of oceanic mixed layer temperature changes. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
44. A Simple Analytical Model for Understanding the Formation of Sea Surface Temperature Patterns under Global Warming*.
- Author
-
Zhang, Lei and Li, Tim
- Subjects
GLOBAL warming ,CLIMATE feedbacks ,OCEAN temperature ,ATMOSPHERIC models ,HEAT flux measurement ,GLOBAL temperature changes - Abstract
How sea surface temperature (SST) changes under global warming is critical for future climate projection because SST change affects atmospheric circulation and rainfall. Robust features derived from 17 models of phase 5 of the Coupled Model Intercomparison Project (CMIP5) include a much greater warming in high latitudes than in the tropics, an El Niño-like warming over the tropical Pacific and Atlantic, and a dipole pattern in the Indian Ocean. However, the physical mechanism responsible for formation of such warming patterns remains open. A simple theoretical model is constructed to reveal the cause of the future warming patterns. The result shows that a much greater polar, rather than tropical, warming depends primarily on present-day mean SST and surface latent heat flux fields, and atmospheric longwave radiation feedback associated with cloud change further enhances this warming contrast. In the tropics, an El Niño-like warming over the Pacific and Atlantic arises from a similar process, while cloud feedback resulting from different cloud regimes between east and west ocean basins also plays a role. A dipole warming over the equatorial Indian Ocean is a response to weakened Walker circulation in the tropical Pacific. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
45. Estimating the Contribution of Sea Ice Response to Climate Sensitivity in a Climate Model.
- Author
-
Caldeira, Ken and Cvijanovic, Ivana
- Subjects
CLIMATE change ,CLIMATE sensitivity ,CLIMATE feedbacks ,ATMOSPHERIC models ,EARTH system science ,GLOBAL temperature changes - Abstract
The response of sea ice to climate change affects Earth's radiative properties in ways that contribute to yet more climate change. Here, a configuration of the Community Earth System Model, version 1.0.4 (CESM 1.0.4), with a slab ocean model and a thermodynamic-dynamic sea ice model is used to investigate the overall contribution to climate sensitivity of feedbacks associated with the sea ice loss. In simulations in which sea ice is not present and ocean temperatures are allowed to fall below freezing, the climate feedback parameter averages ~1.31 W m
−2 K−1 ; the value obtained for control simulations with active sea ice is ~1.05 W m−2 K−1 , indicating that, in this configuration of CESM1.0.4, sea ice response accounts for ~20% of climate sensitivity to an imposed change in radiative forcing. In this model, the effect of sea ice response on the longwave climate feedback parameter is nearly half as important as its effect on the shortwave climate feedback parameter. Further, it is shown that the strength of the overall sea ice feedback can be related to 1) the sensitivity of sea ice area to changes in temperature and 2) the sensitivity of sea ice radiative forcing to changes in sea ice area. An alternative method of disabling sea ice response leads to similar conclusions. It is estimated that the presence of sea ice in the preindustrial control simulation has a climate effect equivalent to ~3 W m−2 of radiative forcing. [ABSTRACT FROM AUTHOR]- Published
- 2014
- Full Text
- View/download PDF
46. Dependence of Climate Response on Meridional Structure of External Thermal Forcing.
- Author
-
Kang, Sarah M. and Xie, Shang-Ping
- Subjects
GLOBAL warming & the environment ,ATMOSPHERIC circulation ,GEOPHYSICAL fluid dynamics ,CLIMATOLOGY observations ,GEOPHYSICAL observations ,TROPICAL climate - Abstract
This study shows that the magnitude of global surface warming greatly depends on the meridional distribution of surface thermal forcing. An atmospheric model coupled to an aquaplanet slab mixed layer ocean is perturbed by prescribing heating to the ocean mixed layer. The heating is distributed uniformly globally or confined to narrow tropical or polar bands, and the amplitude is adjusted to ensure that the global mean remains the same for all cases. Since the tropical temperature is close to a moist adiabat, the prescribed heating leads to a maximized warming near the tropopause, whereas the polar warming is trapped near the surface because of strong atmospheric stability. Hence, the surface warming is more effectively damped by radiation in the tropics than in the polar region. As a result, the global surface temperature increase is weak (strong) when the given amount of heating is confined to the tropical (polar) band. The degree of this contrast is shown to depend on water vapor- and cloud-radiative feedbacks that alter the effective strength of prescribed thermal forcing. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
47. Individual Feedback Contributions to the Seasonality of Surface Warming.
- Author
-
Sejas, Sergio A., Cai, Ming, Hu, Aixue, Meehl, Gerald A., Washington, Warren, and Taylor, Patrick C.
- Subjects
GLOBAL warming & the environment ,CLIMATOLOGY ,ENVIRONMENTAL physics ,ATMOSPHERIC temperature ,CLIMATE change ,SOLAR radiation - Abstract
Using the climate feedback response analysis method, the authors examine the individual contributions of the CO
2 radiative forcing and climate feedbacks to the magnitude, spatial pattern, and seasonality of the transient surface warming response in a 1% yr−1 CO2 increase simulation of the NCAR Community Climate System Model, version 4 (CCSM4). The CO2 forcing and water vapor feedback warm the surface everywhere throughout the year. The tropical warming is predominantly caused by the CO2 forcing and water vapor feedback, while the evaporation feedback reduces the warming. Most feedbacks exhibit noticeable seasonal variations; however, their net effect has little seasonal variation due to compensating effects, which keeps the tropical warming relatively invariant all year long. The polar warming has a pronounced seasonal cycle, with maximum warming in fall/winter and minimum warming in summer. In summer, the large cancelations between the shortwave and longwave cloud feedbacks and between the surface albedo feedback warming and the cooling from the ocean heat storage/dynamics feedback lead to a warming minimum. In polar winter, surface albedo and shortwave cloud feedbacks are nearly absent due to a lack of insolation. However, the ocean heat storage feedback relays the polar warming due to the surface albedo feedback from summer to winter, and the longwave cloud feedback warms the polar surface. Therefore, the seasonal variations in the cloud feedback, surface albedo feedback, and ocean heat storage/dynamics feedback, directly caused by the strong annual cycle of insolation, contribute primarily to the large seasonal variation of polar warming. Furthermore, the CO2 forcing and water vapor and atmospheric dynamics feedbacks add to the maximum polar warming in fall/winter. [ABSTRACT FROM AUTHOR]- Published
- 2014
- Full Text
- View/download PDF
48. The Early Winter Sea Ice Variability under the Recent Arctic Climate Shift*.
- Author
-
Yang, Xiao-Yi and Yuan, Xiaojun
- Subjects
SEA ice ,CLIMATOLOGY ,METEOROLOGY - Abstract
This study reveals that sea ice in the Barents and Kara Seas plays a crucial role in establishing a new Arctic coupled climate system. The early winter sea ice before 1998 shows double dipole patterns over the Arctic peripheral seas. This pattern, referred to as the early winter quadrupole pattern, exhibits the anticlockwise sequential sea ice anomalies propagation from the Greenland Sea to the Barents-Kara Seas and to the Bering Sea from October to December. This early winter in-phase ice variability contrasts to the out-of-phase relationship in late winter. The mean temperature advection and stationary wave heat flux divergence associated with the atmospheric zonal wave-2 pattern are responsible for the early winter in-phase pattern. Since the end of the last century, the early winter quadrupole pattern has broken down because of the rapid decline of sea ice extent in the Barents-Kara Seas. This remarkable ice retreat modifies the local ocean-atmosphere heat exchange, forcing an anomalous low air pressure over the Barents-Kara Seas. The subsequent collapse of the atmospheric zonal wave-2 pattern is likely responsible for the breakdown of the early winter sea ice quadrupole pattern after 1998. Therefore, the sea ice anomalies in the Barents-Kara Seas play a key role in establishing new atmosphere-sea ice coupled relationships in the warming Arctic. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
49. Polar Amplification in CCSM4: Contributions from the Lapse Rate and Surface Albedo Feedbacks.
- Author
-
Graversen, Rune G., Langen, Peter L., and Mauritsen, Thorsten
- Subjects
TEMPERATURE lapse rate ,ATMOSPHERIC temperature ,RADIATIVE forcing ,ATMOSPHERIC radiation ,CLIMATE change ,TROPOSPHERE - Abstract
A vertically nonuniform warming of the troposphere yields a lapse rate feedback by altering the infrared irradiance to space relative to that of a vertically uniform tropospheric warming. The lapse rate feedback is negative at low latitudes, as a result of moist convective processes, and positive at high latitudes, due to stable stratification conditions that effectively trap warming near the surface. It is shown that this feedback pattern leads to polar amplification of the temperature response induced by a radiative forcing. The results are obtained by suppressing the lapse rate feedback in the Community Climate System Model, version 4 (CCSM4). The lapse rate feedback accounts for 15% of the Arctic amplification and 20% of the amplification in the Antarctic region. The fraction of the amplification that can be attributed to the surface albedo feedback, associated with melting of snow and ice, is 40% in the Arctic and 65% in Antarctica. It is further found that the surface albedo and lapse rate feedbacks interact considerably at high latitudes to the extent that they cannot be considered independent feedback mechanisms at the global scale. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
50. A Decomposition of Feedback Contributions to Polar Warming Amplification.
- Author
-
Taylor, Patrick C., Cai, Ming, Hu, Aixue, Meehl, Jerry, Washington, Warren, and Zhang, Guang J.
- Subjects
SURFACE temperature ,GLOBAL warming ,ATMOSPHERIC temperature ,LATITUDE ,RADIATIVE transfer ,HEAT radiation & absorption - Abstract
Polar surface temperatures are expected to warm 2-3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming amplification. Therefore, understanding the individual process contributions to the polar warming is critical to understanding global climate sensitivity. The Coupled Feedback Response Analysis Method (CFRAM) is applied to decompose the annual- and zonal-mean vertical temperature response within a transient 1% yr
−1 CO2 increase simulation of the NCAR Community Climate System Model, version 4 (CCSM4), into individual radiative and nonradiative climate feedback process contributions. The total transient annual-mean polar warming amplification (amplification factor) at the time of CO2 doubling is +2.12 (2.3) and +0.94 K (1.6) in the Northern and Southern Hemisphere, respectively. Surface albedo feedback is the largest contributor to the annual-mean polar warming amplification accounting for +1.82 and +1.04 K in the Northern and Southern Hemisphere, respectively. Net cloud feedback is found to be the second largest contributor to polar warming amplification (about +0.38 K in both hemispheres) and is driven by the enhanced downward longwave radiation to the surface resulting from increases in low polar water cloud. The external forcing and atmospheric dynamic transport also contribute positively to polar warming amplification: +0.29 and +0.32 K, respectively. Water vapor feedback contributes negatively to polar warming amplification because its induced surface warming is stronger in low latitudes. Ocean heat transport storage and surface turbulent flux feedbacks also contribute negatively to polar warming amplification. Ocean heat transport and storage terms play an important role in reducing the warming over the Southern Ocean and Northern Atlantic Ocean. [ABSTRACT FROM AUTHOR]- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.