1. Anti-quorum sensing effects of SidA protein on Escherichia coli receptors: in silico analysis.
- Author
-
Yazdani M, Beihaghi M, Ataee N, Zabetian M, Khaksar S, Nasrizadeh H, and Chaboksavar M
- Abstract
Quorum sensing enables cell-cell communication in bacteria and regulates biofilm formation. Biofilm production promotes pathogenicity of Escherichia coli and causes infections. However, antibiotic resistance limits conventional treatment efficacy against biofilm infections. Quorum quenching offers an alternative by disrupting quorum sensing signals. Allicin, extracted from garlic, possesses antimicrobial and anti-quorum sensing properties. This study employed molecular docking and dynamics simulations to investigate allicin's interaction with the E. coli quorum sensing system, specifically targeting the cytoplasmic SidA receptor protein. SidA binds to N-acyl-homoserine lactone ligands and regulates quorum sensing in E. coli . The crystal structure of SidA was obtained from the PDB. Molecular docking revealed that allicin competitively binds to the ligand-binding pocket of SidA. Simulations analyzed the effects of allicin binding on SidA stability and affinity for N-acyl-homoserine lactones over 200 ns. Parameters like RMSD, RMSF, and hydrogen bonding indicated SidA was more stable when bound to allicin compared to unbound. Binding free energies suggested allicin reduced SidA's affinity for native ligands. Therefore, allicin binding to SidA alters its conformation and inhibits interaction with N-acyl-homoserine lactones, disrupting quorum sensing signaling and biofilm production in E. coli .Communicated by Ramaswamy H. Sarma.
- Published
- 2024
- Full Text
- View/download PDF