1. Persimmon Tannin-Reduction Graphene Oxide-Platinum-Palladium Nanocomposite Decorated on Screen-Printed Carbon Electrode for Enhanced Electrocatalytic Reduction of Hydrogen Peroxide
- Author
-
Guiyin Li, Yewei Xue, Chaoxian Wang, Xinhao Li, Shengnan Li, Yong Huang, and Zhide Zhou
- Subjects
Biomedical Engineering ,Pharmaceutical Science ,Medicine (miscellaneous) ,General Materials Science ,Bioengineering - Abstract
According to studies, Hydrogen peroxide (H2O2) is a significant biomarker of physiological processes. Unnormal H2O2 levels in human body may result in diseases. Hence, there is an increasing demand for monitoring the H2O2 concentrations in biological specimen. Here, we construct a non-enzymatic H2O2 electrochemical biosensor based on persimmon tannin-reduced graphene oxide-platinum-palladium nanocomposite (PrG-Pt@Pd NPs) modified with screen-printed carbon electrode (SPE). Combined with suitable electrocatalytic mode for Pt@Pd NPs, high specific large specific volume and good electrical conductivity of RGO, well as the superior sorption capacity of PT for metal-based nano-ion, the PrGPt@Pd striped pleasing heterogeneous catalytic activity toward H2O2 reduction via the synergistic effect. In experimental conditions of optimal, this non-enzymatic electrochemical sensor exhibited excellent electrocatalytic performance for H2O2 with less negative potential (−0.5 V), fast response time (μM, in addition to this LOD of this sensor was 0.059 μM as well as the excellent sensitivity of the sensor (13.696 μA·μM−1·cm−2). Due to excellent specificity, lower detection limit, and good recovery (98.70–99.96%) in the spiked measurements of human serum samples, this non-enzymatic electrochemical biosensor paves the way for H2O2 detection at ultra-low concentrations in physiology and diagnosis.
- Published
- 2022
- Full Text
- View/download PDF