39 results on '"Lund-Katz S"'
Search Results
2. The molecular basis for the difference in charge between pre-beta- and alpha-migrating high density lipoproteins.
- Author
-
Davidson, W.S., primary, Sparks, D.L., additional, Lund-Katz, S., additional, and Phillips, M.C., additional
- Published
- 1994
- Full Text
- View/download PDF
3. Effect of cholesterol on the charge and structure of apolipoprotein A-I in recombinant high density lipoprotein particles.
- Author
-
Sparks, D.L., primary, Davidson, W.S., additional, Lund-Katz, S, additional, and Phillips, M.C., additional
- Published
- 1993
- Full Text
- View/download PDF
4. Conformation of apolipoprotein E in lipoproteins.
- Author
-
Lund-Katz, S, primary, Weisgraber, K.H., additional, Mahley, R.W., additional, and Phillips, M.C., additional
- Published
- 1993
- Full Text
- View/download PDF
5. The charge and structural stability of apolipoprotein A-I in discoidal and spherical recombinant high density lipoprotein particles.
- Author
-
Sparks, D.L., primary, Lund-Katz, S, additional, and Phillips, M.C., additional
- Published
- 1992
- Full Text
- View/download PDF
6. The conformation of apolipoprotein A-I in discoidal and spherical recombinant high density lipoprotein particles. 13C NMR studies of lysine ionization behavior.
- Author
-
Sparks, D.L., primary, Phillips, M.C., additional, and Lund-Katz, S, additional
- Published
- 1992
- Full Text
- View/download PDF
7. Influence of apolipoproteins AI, AII, and Cs on the metabolism of membrane and lysosomal cholesterol in macrophages.
- Author
-
Mahlberg, F.H., primary, Glick, J.M., additional, Lund-Katz, S., additional, and Rothblat, G.H., additional
- Published
- 1991
- Full Text
- View/download PDF
8. 13C NMR evidence that substitution of glutamine for arginine 3500 in familial defective apolipoprotein B-100 disrupts the conformation of the receptor-binding domain.
- Author
-
Lund-Katz, S, primary, Innerarity, T L, additional, Arnold, K S, additional, Curtiss, L K, additional, and Phillips, M C, additional
- Published
- 1991
- Full Text
- View/download PDF
9. Nuclear magnetic resonance investigation of the interactions with phospholipid of an amphipathic alpha-helix-forming peptide of the apolipoprotein class.
- Author
-
Lund-Katz, S, primary, Anantharamaiah, G M, additional, Venkatachalapathi, Y V, additional, Segrest, J P, additional, and Phillips, M C, additional
- Published
- 1990
- Full Text
- View/download PDF
10. Mechanism of scavenger receptor class B type I-mediated selective uptake of cholesteryl esters from high density lipoprotein to adrenal cells.
- Author
-
Rodrigueza, W V, Thuahnai, S T, Temel, R E, Lund-Katz, S, Phillips, M C, and Williams, D L
- Abstract
Despite extensive studies and characterizations of the high density lipoprotein-cholesteryl ester (HDL-CE)-selective uptake pathway, the mechanisms by which the hydrophobic CE molecules are transferred from the HDL particle to the plasma membrane have remained elusive, until the discovery that scavenger receptor BI (SR-BI) plays an important role. To elucidate the molecular mechanism, we examined the quantitative relationships between the binding of HDL and the selective uptake of its CE in the murine adrenal Y1-BS1 cell line. A comparison of concentration dependences shows that half-maximal high affinity cell association of HDL occurs at 8.7 +/- 4.7 micrograms/ml and the Km of HDL-CE-selective uptake is 4.5 +/- 1.5 micrograms/ml. These values are similar, and there is a very high correlation between these two processes (r2 = 0.98), suggesting that they are linked. An examination of lipid uptake from reconstituted HDL particles of defined composition and size shows that there is a non-stoichiometric uptake of HDL lipid components, with CE being preferred over the major HDL phospholipids, phosphatidylcholine and sphingomyelin. Comparison of the rates of selective uptake of different classes of phospholipid in this system gives the ranking: phosphatidylserine > phosphatidylcholine approximately phosphatidylinositol > sphingomyelin. The rate of CE-selective uptake from donor particles is proportional to the amount of CE initially present in the particles, suggesting a mechanism in which CE moves down its concentration gradient from HDL particles docked on SR-BI into the cell plasma membrane. The activation energy for CE uptake from either HDL3 or reconstituted HDL is about 9 kcal/mol, indicating that HDL-CE uptake occurs via a non-aqueous pathway. HDL binding to SR-BI allows access of CE molecules to a "channel" formed by the receptor from which water is excluded and along which HDL-CE molecules move down their concentration gradient into the cell plasma membrane.
- Published
- 1999
11. A 13C NMR characterization of lysine residues in apolipoprotein B and their role in binding to the low density lipoprotein receptor.
- Author
-
Lund-Katz, S, Ibdah, J A, Letizia, J Y, Thomas, M T, and Phillips, M C
- Abstract
NMR spectroscopy of 13C-labeled human low density lipoprotein (LDL) has been employed to characterize the lysine (Lys) residues in apo B-100. Reductive methylation with [13C]formaldehyde converts up to two-thirds of the Lys to the dimethylamino derivative; this pool of Lys is exposed at the surface of the LDL particle. The [13C]dimethyl-Lys which are visualized exhibit resonances at chemical shifts of 42.8 and 43.2 ppm (pH 7.6) indicating that they exist in two different microenvironments; this is a reflection of the native conformation of apo B associated with lipid, because the labeled, reduced, and alkylated protein gives a single resonance when dissolved in 7 M guanidine hydrochloride. The pH dependences of the Lys chemical shifts indicate that the two types of Lys titrate with different pK values; “active” Lys have a pK of 8.9, while “normal” Lys have a pK of 10.5. About 53 active Lys and 172 normal Lys are exposed on the surface of LDL with the remaining 132 Lys which are present in the human apo B-100 molecule being buried and unavailable for methylation. Addition of paramagnetic ions indicates that the active and normal Lys have different exposures to the aqueous phase; apparently this is a reflection of folding of the apo B molecule. The relative involvement of active and normal Lys in binding of apo B-100 to the LDL receptor on fibroblasts was explored by measuring the decrease in receptor binding as a function of the degree of methylation of the two types of Lys. Upper limits of 21 active and 31 normal Lys in the entire apo B-100 molecule are involved in the binding of LDL to the receptor. It is likely that these Lys are located in domains of apo B which contain clusters of basic amino acid residues and also bind heparin. If the sequence corresponding to apo B-48 (residues 1-2151) which does not bind to the receptor is excluded, then the above limits are halved; an upper limit of 10 active Lys may be particularly involved in receptor binding.
- Published
- 1988
- Full Text
- View/download PDF
12. Apolipoprotein-mediated plasma membrane microsolubilization. Role of lipid affinity and membrane penetration in the efflux of cellular cholesterol and phospholipid.
- Author
-
Gillotte, K L, Zaiou, M, Lund-Katz, S, Anantharamaiah, G M, Holvoet, P, Dhoest, A, Palgunachari, M N, Segrest, J P, Weisgraber, K H, Rothblat, G H, and Phillips, M C
- Abstract
Lipid-free apolipoprotein (apo) A-I contributes to the reverse transport of cholesterol from the periphery to the liver by solubilizing plasma membrane phospholipid and cholesterol. The features of the apolipoprotein required for this process are not understood and are addressed in the current study. Membrane microsolubilization of human fibroblasts is not specific for apo A-I; unlipidated apos A-II, C, and E incubated with the fibroblast monolayers at a saturating concentration of 50 micrograms/ml are all able to release cholesterol and phospholipid similarly. To determine the properties of the apolipoprotein that drive the process, apo A-I peptides spanning the entire sequence of the protein were utilized; the peptides correspond to the 11- and 22-residue amphipathic alpha-helical segments, as well as adjacent combinations of the helices. Of the 20 helical peptides examined, only peptides representing the N-and C-terminal portions of the protein had the ability to solubilize phospholipid and cholesterol. Cholesterol efflux to the most effective peptides, 44-65 and 209-241, was approximately 50 and 70%, respectively, of that to intact apo A-I. Deletion mutants of apo E and apo A-I were constructed that have reduced lipid binding affinities as compared with the intact molecule. The proteins, apo A-I (Delta222-243), apo A-I (Delta190-243), apo E3 (Delta192-299) and apo E4 (Delta192-299) all exhibited a decreased ability to remove cellular cholesterol and phospholipid. These decreases correlated with the reduced ability of these proteins to penetrate into a phospholipid monomolecular film. Overall, the results indicate that insertion of amphipathic alpha-helices between the plasma membrane phospholipid molecules is a required step in the mechanism of apolipoprotein-mediated cellular lipid efflux. Therefore the lipid binding ability of the apolipoprotein is critical for efficient membrane microsolubilization.
- Published
- 1999
13. Effects of acceptor particle size on the efflux of cellular free cholesterol.
- Author
-
Davidson, W S, Rodrigueza, W V, Lund-Katz, S, Johnson, W J, Rothblat, G H, and Phillips, M C
- Abstract
Several subspecies of human high density lipoprotein (HDL) have been shown to exist, and particle size is one parameter that can be used to distinguish them. Recently, a small HDL subspecies has been described that may be a particularly efficient acceptor of peripheral cell unesterified (free) cholesterol (FC). To address the effects of particle size on the ability of HDL to remove FC from cells, homogeneous, well defined HDL particles were reconstituted (rHDL) that varied in particle diameter within the size range of human HDL particles (7-13 nm). The abilities of each of these particles to remove cellular FC from mouse L-cells and rat Fu5AH hepatoma cells were compared on the basis of their phospholipid (PL) content as well as on a per particle basis. The effect of particle size was also examined using small unilamellar vesicles (SUV) of 25 nm in diameter and large unilamellar vesicles (LUVs) of 70-180 nm in diameter. The SUV were prepared by sonication, and the LUVs were prepared by extrusion techniques. The FC efflux efficiency of these particles (in order of decreasing efficiency) was: rHDL > SUV > LUV when compared on the basis of acceptor PL content across a range of concentrations (i.e. at a given PL concentration for these three acceptor classes, smaller particles were more efficient). The FC efflux differences between the rHDL and the vesicles were not due to the absence of apolipoprotein in the vesicles. No difference was detected among the rHDL of varying size, nor was a difference detected among the LUVs of varying size when compared on the basis of PL content. When the FC efflux data for rHDL and LUVs were normalized on the basis of the number of acceptor particles present at a given PL concentration, a correlation was found between acceptor particle radius and the ability to accept cellular FC with larger particles being the most efficient. However, the dependence of the rate of FC efflux on acceptor particle size was not quantitatively the same within the rHDL and LUV classes of acceptor particles. The dependence of FC efflux on acceptor particle size may reflect differing abilities of the variously sized acceptor particles to access the region very close to the cell plasma membrane where most of the FC removal is expected to occur.
- Published
- 1995
14. Molecular determinants of plasma cholesteryl ester transfer protein binding to high density lipoproteins.
- Author
-
Bruce, C, Davidson, W S, Kussie, P, Lund-Katz, S, Phillips, M C, Ghosh, R, and Tall, A R
- Abstract
The plasma cholesteryl ester transfer protein (CETP) mediates the transfer of neutral lipids between lipoproteins and is associated with high density lipoproteins (HDL). To understand the mechanism of interaction of CETP with HDL, we studied the binding of pure recombinant CETP to 1-palmitoyl-2-oleoylphosphatidylcholine (POPC)/apoA-I discoidal particles. Separating bound from free CETP using native gradient gel electrophoresis, complexes of CETP with 10-nm hydrodynamic diameter discoidal particles migrated with a diameter of 12-16 nm, compared with approximately 7.5 nm for CETP. At lower ratios of CETP to discs, CETP bound to discs without displacement of apoA-I. CETP alone was unable to generate discoidal complexes. Cross-linking and fluorescence resonance energy transfer experiments indicated that CETP bound to discs as monomers. Cross-linking of CETP to apoA-I in discs suggested proximity of apoA-I and CETP. By negative-stain electron microscopy, discoidal complexes containing CETP and CETP monoclonal antibody showed localization of antibody molecules to the disc edge, suggesting that CETP was bound to the disc edge. The binding of CETP to discs of different composition or size was studied. Discs (10-nm Stokes diameter) prepared with either apoA-I or apoA-II had a similar Kd (120 nM). Inclusion of 1 mol % cholesteryl oleate, 5 mol % cholesterol, or 6 mol % phosphatidylinositol increased the binding affinity of CETP 3-10 times (20-30 nM). In comparison, plasma HDL3 had a Kd of approximately 450 nM. For POPC/apoA-I discs, 10-nm discs bound CETP with much higher affinity than smaller 7.8-nm discs (Kd = 1-2 microM). 7.7-nm hydrodynamic diameter POPC/apoA-I spherical particles containing either triolein or cholesteryl oleate in their core bound CETP with higher affinity (Kd = 50-100 nM) than 7.8-nm POPC/apoA-I discs. Thus, CETP appears to bind to the perimeter of discoidal particles, possibly in a process in which flexible segments in apoA-I or apoA-II accommodate CETP at the disc edge. The binding of CETP to HDL is markedly influenced by overall particle size and shape and by lipid composition, and the increased binding affinity for cholesterol- and cholesteryl ester-containing discs suggests a higher affinity of CETP for nascent than mature HDL.
- Published
- 1995
15. Effects of the neutral lipid content of high density lipoprotein on apolipoprotein A-I structure and particle stability.
- Author
-
Sparks, D L, Davidson, W S, Lund-Katz, S, and Phillips, M C
- Abstract
Alterations in high density lipoprotein (HDL) composition that occur in dyslipidemic states may modulate a number of events involved in cholesterol homeostasis. To elucidate the details of how HDL-core composition can affect the molecular structure of different kinds of HDL particles, the conformation and stability of apoA-I have been investigated in homogeneous recombinant HDL particles (LpA-I) containing palmitoyloleoyl phosphatidylcholine (POPC), triolein (TG), and/or cholesteryl linoleate (CE). In a discoidal particle containing two molecules of apoA-I and 85 molecules of POPC, apoA-I exhibits an alpha-helix content of 70% and a free energy of stability of its alpha-helical segments (delta G0D) of 2.2 kcal/mol. Inclusion of eight molecules of TG into the complex significantly reduces the alpha-helix content and stability of apoA-I, whereas inclusion of four molecules of CE into the complex has an opposite effect in that the alpha-helix content is significantly reduced and the stability of the remaining alpha-helical structure of apoA-I is increased. Neutral lipids have a different effect on apoA-I conformation in spherical LpA-I particles. In a sonicated-spherical LpA-I particle containing two molecules of apoA-I and 70 molecules of POPC, apoA-I exhibits an alpha-helix content of about 60% and a delta G0D of 1.2 kcal/mol apoA-I. Inclusion of either 10 molecules of TG or six molecules of CE into such a particle increases both the alpha-helix content and stability of apoA-I. Increasing the CE/TG ratio in LpA-I particles that contain both neutral lipids enhances the stability of the alpha-helical segments. ApoA-I molecules tend to dissociate and cause particle instability when delta G0D for the lipid-bound alpha-helices is less than that for helices in the lipid-free state. The stabilities of both discoidal and spherical LpA-I particles are relatively low when the only neutral lipid present is TG but the particle stability is enhanced by the presence of CE molecules. Such dissociation of apoA-I molecules from LpA-I particles that have a low CE/TG ratio would be promoted in the hypertriglyceridemic state in vivo.
- Published
- 1995
16. Effect of the arrangement of tandem repeating units of class A amphipathic alpha-helixes on lipid interaction.
- Author
-
Mishra, V K, Palgunachari, M N, Lund-Katz, S, Phillips, M C, Segrest, J P, and Anantharamaiah, G M
- Abstract
Exchangeable apolipoproteins possess tandem repeating units of class A amphipathic helical segments and many of them are linked together by proline residues. To understand the optimal arrangement of the amphipathic helixes for lipid association, we have studied the interactions of three model class A amphipathic helical peptides with lipids. The three peptides are: 37pA, a dimer of 18A (DWLKAFYDKVAEKLKEAF) linked together by a Pro (18A-Pro-18A); 37aA, a dimer of 18A linked together by an Ala (18A-Ala-18A); and 36A, a dimer of 18A without any linker residue (18A-18A). Circular dichroism (CD) spectra showed that the peptides are predominantly alpha-helical in aqueous and lipid environments. Temperature dependent CD studies indicated that in buffer helix stability decreases in the order 36A > 37aA > 37pA; however, in the presence of dimyristoyl phosphatidylcholine (DMPC), the above order is reversed. The retention times of the peptides on a C18 reversed-phase high performance liquid chromatography column decreased in the order 36A > 37aA > 37pA, consistent with the lengths of the nonpolar faces of the alpha-helixes being in the same order; the retention time of the parent 18A was shorter than 37pA. While 37pA adsorbed to egg phosphatidylcholine monolayers most strongly, the degree and rate of association of 36A were significantly lower. Differential scanning calorimetry indicated that, while 37pA was most effective in reducing the enthalpy of the gel to liquid-crystalline phase transition of DMPC multilamellar vesicles, 36A was least effective; 36A was even less effective than 18A. Fluorescence quenching experiments with iodide and acrylamide indicated that, in the presence of DMPC, Trp residues in 36A are most exposed to the quenchers while in 37pA they are least exposed. In the presence of DMPC, shielding of Trp in 18A from the quenchers was more than that observed with Trp residues in 36A. The results of this study suggest that the arrangement of tandem repeating amphipathic helical units which results in the formation of a class A amphipathic helix with a nonpolar face longer than five or six turns reduces the ability of the helix to associate with phospholipid.
- Published
- 1995
17. The effect of high density lipoprotein phospholipid acyl chain composition on the efflux of cellular free cholesterol.
- Author
-
Davidson, W S, Gillotte, K L, Lund-Katz, S, Johnson, W J, Rothblat, G H, and Phillips, M C
- Abstract
High density lipoprotein (HDL) phospholipid (PL) fatty acyl chain composition has been proposed to affect the ability of HDL to participate in the first step of reverse cholesterol transport. To examine the effects of PL fatty acid chain length and degree of unsaturation in this process, reconstituted HDL (rHDL) particles were made with human apolipoprotein (apo) A-I and PL containing fatty acid chains from 14 to 18 carbons in length, which were either fully saturated or unsaturated in one or both chains. These particles were characterized structurally and for their ability to promote free (unesterified) cholesterol (FC) efflux from cells growing in culture. The discoidal rHDL particles were homogeneous and exhibited similar hydrodynamic diameters (10.4 +/- 1.0 nm) indicating that apoA-I forms similarly sized discs with a variety of PL. Measurements of particle surface charge, apoA-I alpha-helix content, and conformational stability indicated that the conformation of apoA-I varies among the particles. These conformational effects on apoA-I are consistent with the PL fluidity influencing the interaction between the amphipathic alpha-helical segments and PL acyl chains. Differential scanning calorimetry demonstrated that the physical state of the rHDL PL at 37 degrees C varied according to acyl chain length and degree of unsaturation; the FC efflux efficiencies for particles with PL in either the gel or liquid crystal states were determined. The ability of the rHDL to accept cellular FC depended on the physical state of the PL in the rHDL. Liquid crystal PL formed the most efficient FC acceptor particles exhibiting a maximal efflux velocity (Vmax) of 12-14% release of total cellular FC per h. Gel-phase PL formed inefficient rHDL acceptors with a Vmax of about 3%/h. A similar hierarchy of FC efflux efficiency was noted when either mouse L-cells or rat Fu5AH hepatoma cells were used as the FC donors. Furthermore, this hierarchy was found to be due to the characteristics of the PL and not due to variable apoA-I conformation because protein-free, small unilamellar vesicles made with the same PL exhibited similar relative efflux capabilities. Generally, the ability of a given rHDL particle to accept cellular FC was related to rHDL PL acyl chain length and degree of unsaturation; decreases in PL acyl chain length and increases in chain unsaturation tended to result in more efficient FC acceptor particles.(ABSTRACT TRUNCATED AT 400 WORDS)
- Published
- 1995
18. The influence of the triglyceride content of low density lipoprotein on the interaction of apolipoprotein B-100 with cells.
- Author
-
Aviram, M, Lund-Katz, S, Phillips, M C, and Chait, A
- Abstract
To study the effect of triglyceride content of low density lipoprotein (LDL) on its physicochemical and biological properties, we have depleted the triglyceride by incubation with hepatic lipase (HL-LDL) and raised the triglyceride by incubation of HL-LDL with very low density lipoprotein and lipoprotein-deficient serum. HL-LDL was taken up by human monocyte-derived macrophages and by human skin fibroblasts at an increased rate compared to untreated LDL. Incubation of the various LDL preparations revealed that cellular LDL degradation as well as LDL-mediated cholesterol esterification were inversely related to the triglyceride content of the LDL preparation. Modification of the triglyceride content of LDL also was associated with changes in the free fatty acid content, but the interaction of the LDL with cells was unaffected by the level of this component. The triglyceride content of LDL was found to be reciprocally related to the number of free lysine amino groups of LDL apolipoprotein B (apoB) which could be labeled with trinitrobenzenesulfonic acid. 13C-Nuclear magnetic resonance (NMR) spectra of native LDL and HL-LDL samples containing [13CH3]2 lysine residues formed by reductive methylation (11-13% modification) showed that the arrangement of apoB lysines is perturbed by the exposure to hepatic lipase. The ratio of labeled lysines with pK 8.9 to those with pK 10.5 exposed on the surface of LDL particles was decreased by about 40% by lipase treatment. These effects are apparently due to changes in local apoB conformation because circular dichroism spectra revealed that the average secondary structure of the entire apoB molecule is the same in native LDL and HL-LDL. The triglyceride content of LDL reciprocally affected its binding to a monoclonal antibody which recognizes epitopes around the LDL receptor binding domain of apoB. The above evidence indicates that modulation of the core triglyceride and possibly also surface phospholipid content of LDL can alter the conformation of apoB on the surface of the particle, thereby influencing the interaction with cell surface LDL receptors.
- Published
- 1988
- Full Text
- View/download PDF
19. Mechanisms responsible for the compositional heterogeneity of nascent high density lipoprotein.
- Author
-
Lund-Katz S, Lyssenko NN, Nickel M, Nguyen D, Chetty PS, Weibel G, and Phillips MC
- Subjects
- ATP Binding Cassette Transporter 1, ATP-Binding Cassette Transporters biosynthesis, ATP-Binding Cassette Transporters chemistry, ATP-Binding Cassette Transporters genetics, Animals, Apolipoprotein A-I chemistry, Apolipoprotein A-I genetics, Cell Line, Cricetinae, Humans, Lipoproteins, HDL chemistry, Lipoproteins, HDL genetics, Phospholipids chemistry, Phospholipids genetics, Solubility, Sphingomyelins chemistry, Sphingomyelins genetics, Apolipoprotein A-I metabolism, Lipoproteins, HDL metabolism, Phospholipids metabolism, Sphingomyelins metabolism
- Abstract
Apolipoprotein (apo) A-I-containing nascent HDL particles produced by the ATP binding cassette transporter A1 have different sizes and compositions. To understand the molecular basis for this heterogeneity, the HDL particles produced by apoA-I-mediated solubilization of phospholipid (PL)/free (unesterified) cholesterol (FC) bilayer membranes in cell and cell-free systems are compared. Incubation of apoA-I with ATP binding cassette transporter A1-expressing baby hamster kidney cells leads to formation of two populations of FC-containing discoidal nascent HDL particles. The larger 11-nm diameter particles are highly FC-enriched (FC/PL = 1.2/1 mol/mol) relative to the smaller 8 nm particles and the cell plasma membrane (FC/PL = 0.4/1). ApoA-I-mediated spontaneous solubilization of either multilamellar or unilamellar vesicles made of a membrane-PL mixture and FC yields discoidal HDL particles with diameters in the range 9-17 nm and, as found with the cell system, the larger particles are relatively enriched in FC despite the fact that all particles are created by solubilization of a common FC/PL membrane domain. The size-dependent distribution of FC among HDL particles is due to varying amounts of PL being sequestered in a boundary layer by interaction with apoA-I at the disc edge. The presence of a relatively large boundary layer in smaller discoidal HDL promotes preferential distribution of phosphatidylserine to such particles. However, phosphatidylcholine and sphingomyelin which are the primary PL constituents of nascent HDL do not exhibit selective incorporation into HDL discs of different sizes. This understanding of the mechanisms responsible for the heterogeneity in lipid composition of nascent HDL particles may provide a basis for selecting subspecies with preferred cardio-protective properties.
- Published
- 2013
- Full Text
- View/download PDF
20. Dual role of an N-terminal amyloidogenic mutation in apolipoprotein A-I: destabilization of helix bundle and enhancement of fibril formation.
- Author
-
Adachi E, Nakajima H, Mizuguchi C, Dhanasekaran P, Kawashima H, Nagao K, Akaji K, Lund-Katz S, Phillips MC, and Saito H
- Subjects
- Amyloid metabolism, Amyloidosis, Familial metabolism, Circular Dichroism, HEK293 Cells, Humans, Hydrogen-Ion Concentration, Microscopy, Atomic Force, Point Mutation, Protein Structure, Secondary, Protein Structure, Tertiary, Spectroscopy, Fourier Transform Infrared methods, Thermodynamics, Time Factors, Amyloid chemistry, Amyloidosis, Familial genetics, Apolipoprotein A-I genetics, Mutation
- Abstract
A number of naturally occurring mutations of apolipoprotein (apo) A-I, the major protein of HDL, are known to be associated with hereditary amyloidosis and atherosclerosis. Here, we examined the effects of the G26R point mutation in apoA-I (apoA-I(Iowa)) on the structure, stability, and aggregation propensity to form amyloid fibril of full-length apoA-I and the N-terminal fragment of apoA-I. Circular dichroism and fluorescence measurements demonstrated that the G26R mutation destabilizes the N-terminal helix bundle domain of full-length protein, leading to increased hydrophobic surface exposure, whereas it has no effect on the initial structure of the N-terminal 1-83 fragment, which is predominantly a random coil structure. Upon incubation for extended periods at neutral pH, the N-terminal 1-83 variants undergo a conformational change to β-sheet-rich structure with a great increase in thioflavin T fluorescence, whereas no structural change is observed in full-length proteins. Comparison of fibril-forming propensity among substituted mutants at Gly-26 position of 1-83 fragments demonstrated that the G26R mutation enhances the nucleation step of fibril formation, whereas G26K and G26E mutations have small or inhibiting effects on the formation of fibrils. These fibrils of the 1-83 variants have long and straight morphology as revealed by atomic force microscopy and exhibited significant toxicity with HEK293 cells. Our results indicate dual critical roles of the arginine residue at position 26 in apoA-I(Iowa): destabilization of the N-terminal helix bundle structure in full-length protein and enhancement of amyloid fibril formation by the N-terminal 1-83 fragment.
- Published
- 2013
- Full Text
- View/download PDF
21. Influence of apolipoprotein (Apo) A-I structure on nascent high density lipoprotein (HDL) particle size distribution.
- Author
-
Vedhachalam C, Chetty PS, Nickel M, Dhanasekaran P, Lund-Katz S, Rothblat GH, and Phillips MC
- Subjects
- ATP Binding Cassette Transporter 1, ATP-Binding Cassette Transporters genetics, ATP-Binding Cassette Transporters metabolism, Animals, Apolipoprotein A-I genetics, Apolipoprotein A-I metabolism, Cell Line, Cholesterol metabolism, Humans, Lipoproteins, HDL genetics, Lipoproteins, HDL metabolism, Macrophages cytology, Macrophages metabolism, Mice, Particle Size, Apolipoprotein A-I chemistry, Lipoproteins, HDL chemistry, Protein Conformation
- Abstract
The principal protein of high density lipoprotein (HDL), apolipoprotein (apo) A-I, in the lipid-free state contains two tertiary structure domains comprising an N-terminal helix bundle and a less organized C-terminal domain. It is not known how the properties of these domains modulate the formation and size distribution of apoA-I-containing nascent HDL particles created by ATP-binding cassette transporter A1 (ABCA1)-mediated efflux of cellular phospholipid and cholesterol. To address this issue, proteins corresponding to the two domains of human apoA-I (residues 1-189 and 190-243) and mouse apoA-I (residues 1-186 and 187-240) together with some human/mouse domain hybrids were examined for their abilities to form HDL particles when incubated with either ABCA1-expressing cells or phospholipid multilamellar vesicles. Incubation of human apoA-I with cells gave rise to two sizes of HDL particles (hydrodynamic diameter, 8 and 10 nm), and removal or disruption of the C-terminal domain eliminated the formation of the smaller particle. Variations in apoA-I domain structure and physical properties exerted similar effects on the rates of formation and sizes of HDL particles created by either spontaneous solubilization of phospholipid multilamellar vesicles or the ABCA1-mediated efflux of cellular lipids. It follows that the sizes of nascent HDL particles are determined at the point at which cellular phospholipid and cholesterol are solubilized by apoA-I; apparently, this is the rate-determining step in the overall ABCA1-mediated cellular lipid efflux process. The stability of the apoA-I N-terminal helix bundle domain and the hydrophobicity of the C-terminal domain are important determinants of both nascent HDL particle size and their rate of formation.
- Published
- 2010
- Full Text
- View/download PDF
22. Mechanism of ATP-binding cassette transporter A1-mediated cellular lipid efflux to apolipoprotein A-I and formation of high density lipoprotein particles.
- Author
-
Vedhachalam C, Duong PT, Nickel M, Nguyen D, Dhanasekaran P, Saito H, Rothblat GH, Lund-Katz S, and Phillips MC
- Subjects
- ATP Binding Cassette Transporter 1, ATP-Binding Cassette Transporters metabolism, Animals, Apolipoprotein A-I metabolism, Binding Sites, Cell Line, Cell Membrane metabolism, Dose-Response Relationship, Drug, Immunohistochemistry, Lipids chemistry, Macrophages metabolism, Mice, Microscopy, Electron, Models, Biological, ATP-Binding Cassette Transporters physiology, Adenosine Triphosphate chemistry, Lipoproteins, HDL metabolism
- Abstract
The ATP-binding cassette transporter A1 (ABCA1) plays a critical role in the biogenesis of high density lipoprotein (HDL) particles and in mediating cellular cholesterol efflux. The mechanism by which ABCA1 achieves these effects is not established, despite extensive investigation. Here, we present a model that explains the essential features, especially the effects of ABCA1 activity in inducing apolipoprotein (apo) A-I binding to cells and the compositions of the discoidal HDL particles that are produced. The apo A-I/ABCA1 reaction scheme involves three steps. First, there is binding of a small regulatory pool of apo A-I to ABCA1, thereby enhancing net phospholipid translocation to the plasma membrane exofacial leaflet; this leads to unequal lateral packing densities in the two leaflets of the phospholipid bilayer. Second, the resultant membrane strain is relieved by bending and by creation of exovesiculated lipid domains. The formation of highly curved membrane surface promotes high affinity binding of apo A-I to these domains. Third, this pool of bound apo A-I spontaneously solubilizes the exovesiculated domain to create discoidal nascent HDL particles. These particles contain two, three, or four molecules of apo A-I and a complement of membrane phospholipid classes together with some cholesterol. A key feature of this mechanism is that membrane bending induced by ABCA1 lipid translocase activity creates the conditions required for nascent HDL assembly by apo A-I. Overall, this mechanism is consistent with the known properties of ABCA1 and apo A-I and reconciles many of the apparently discrepant findings in the literature.
- Published
- 2007
- Full Text
- View/download PDF
23. Two-step mechanism of binding of apolipoprotein E to heparin: implications for the kinetics of apolipoprotein E-heparan sulfate proteoglycan complex formation on cell surfaces.
- Author
-
Futamura M, Dhanasekaran P, Handa T, Phillips MC, Lund-Katz S, and Saito H
- Subjects
- Apolipoprotein E3, Apolipoproteins E chemistry, Apolipoproteins E genetics, Binding Sites, Electron Spin Resonance Spectroscopy, Gels, Heparin pharmacology, Humans, Kinetics, Lysine genetics, Lysine metabolism, Mutation genetics, Peptide Fragments chemistry, Peptide Fragments genetics, Peptide Fragments metabolism, Protein Conformation drug effects, Protein Isoforms chemistry, Protein Isoforms genetics, Protein Isoforms metabolism, Protein Transport, Sepharose metabolism, Thermodynamics, Apolipoproteins E metabolism, Heparan Sulfate Proteoglycans metabolism, Heparin metabolism, Models, Biological, Sepharose analogs & derivatives
- Abstract
The interaction of apolipoprotein E (apoE) with cell-surface heparan sulfate proteoglycans is an important step in the uptake of lipoprotein remnants by the liver. ApoE interacts predominantly with heparin through the N-terminal binding site spanning the residues around 136-150. In this work, surface plasmon resonance analysis was employed to investigate how amphipathic alpha-helix properties and basic residue organization in this region modulate binding of apoE to heparin. The apoE/heparin interaction involves a two-step process; apoE initially binds to heparin with fast association and dissociation rates, followed by a step exhibiting much slower kinetics. Circular dichroism and surface plasmon resonance experiments using a disulfide-linked mutant, in which opening of the N-terminal helix bundle was prevented, demonstrated that there is no major secondary or tertiary structural change in apoE upon heparin binding. Mutations of Lys-146, a key residue for the heparin interaction, greatly reduced the favorable free energy of binding of the first step without affecting the second step, suggesting that electrostatic interaction is involved in the first binding step. Although lipid-free apoE2 tended to bind less than apoE3 and apoE4, there were no significant differences in rate and equilibrium constants of binding among the apoE isoforms in the lipidated state. Discoidal apoE3-phospholipid complexes using a substitution mutant (K143R/K146R) showed similar binding affinity to wild type apoE3, indicating that basic residue specificity is not required for the effective binding of apoE to heparin, unlike its binding to the low density lipoprotein receptor. In addition, disruption of the alpha-helix structure in the apoE heparin binding region led to an increased favorable free energy of binding in the second step, suggesting that hydrophobic interactions contribute to the second binding step. Based on these results, it seems that cell-surface heparan sulfate proteoglycan localizes apoE-enriched remnant lipoproteins to the vicinity of receptors by fast association and dissociation.
- Published
- 2005
- Full Text
- View/download PDF
24. Influence of ApoA-I structure on the ABCA1-mediated efflux of cellular lipids.
- Author
-
Vedhachalam C, Liu L, Nickel M, Dhanasekaran P, Anantharamaiah GM, Lund-Katz S, Rothblat GH, and Phillips MC
- Subjects
- ATP Binding Cassette Transporter 1, Apolipoprotein A-I genetics, Apolipoprotein A-I metabolism, Base Sequence, Fibroblasts metabolism, Humans, Macrophages metabolism, Mutation, Sequence Deletion, ATP-Binding Cassette Transporters metabolism, Apolipoprotein A-I chemistry, Cholesterol metabolism, Phospholipids metabolism
- Abstract
The influence of apolipoprotein (apo) A-I structure on ABCA1-mediated efflux of cellular unesterified (free) cholesterol (FC) and phospholipid (PL) is not well understood. To address this issue, we used a series of apoA-I mutants to examine the contributions of various domains in the molecule to ABCA1-mediated FC and PL efflux from mouse J774 macrophages and human skin fibroblasts. Irrespective of the cell type, deletion or disruption of the C-terminal lipid-binding domain of apoA-I drastically reduced the FC and PL efflux ( approximately 90%), indicating that the C-terminal amphipathic alpha-helix is required for high affinity microsolubilization of FC and PL. Deletion in the N-terminal region of apoA-I also reduced the lipid efflux ( approximately 30%) and increased the K(m) about 2-fold compared with wild type apoA-I, whereas deletion of the central domain (Delta123-166) had no effect on either K(m) or V(max). These results indicate that ABCA1-mediated lipid efflux is relatively insensitive to the organization of the apoA-I N-terminal helix-bundle domain. Alterations in apoA-I structure caused parallel changes in its ability to bind to a PL bilayer and to induce efflux of FC and PL. Overall, these results are consistent with a two-step model for ABCA1-mediated lipid efflux. In the first step, apoA-I binds to ABCA1 and hydrophobic alpha-helices in the C-terminal domain of apoA-I insert into the region of the perturbed PL bilayer created by the PL transport activity of ABCA1, thereby allowing the second step of lipidation of apoA-I and formation of nascent high density lipoprotein particles to occur.
- Published
- 2004
- Full Text
- View/download PDF
25. Aromatic residue position on the nonpolar face of class a amphipathic helical peptides determines biological activity.
- Author
-
Datta G, Epand RF, Epand RM, Chaddha M, Kirksey MA, Garber DW, Lund-Katz S, Phillips MC, Hama S, Navab M, Fogelman AM, Palgunachari MN, Segrest JP, and Anantharamaiah GM
- Subjects
- Amino Acid Sequence, Chemotaxis, Chromatography, High Pressure Liquid, Circular Dichroism, Dose-Response Relationship, Drug, Endothelium, Vascular metabolism, Erythrocytes metabolism, Humans, Light, Lipid Peroxides chemistry, Lipids chemistry, Lipoproteins chemistry, Lipoproteins, LDL chemistry, Models, Molecular, Molecular Sequence Data, Monocytes metabolism, Pressure, Protein Binding, Protein Conformation, Protein Structure, Secondary, Scattering, Radiation, Spectrometry, Fluorescence, Time Factors, Tryptophan chemistry, Peptides chemistry, Phospholipids chemistry, Proteins chemistry
- Abstract
The apolipoprotein A-I mimetic peptide 4F (Ac-DWFKAFYDKVAEKFKEAF-NH(2)), with four Phe residues on the nonpolar face of the amphipathic alpha-helix, is strongly anti-inflammatory, whereas two 3F analogs (3F(3) and 3F(14)) are not. To understand how changes in helix nonpolar face structure affect function, two additional 3F analogs, Ac-DKLKAFYDKVFEWAKEAF-NH(2) (3F-1) and Ac-DKWKAVYDKFAEAFKEFL-NH(2) (3F-2), were designed using the same amino acid composition as 3F(3) and 3F(14). The aromatic residues in 3F-1 and 3F-2 are near the polar-nonpolar interface and at the center of the nonpolar face of the helix, respectively. Like 4F, but in contrast to 3F(3) and 3F(14), these peptides effectively inhibited lytic peptide-induced hemolysis, oxidized phospholipid-induced monocyte chemotaxis, and scavenged lipid hydroperoxides from low density lipoprotein. High pressure liquid chromatography retention times and monolayer exclusion pressures indicated that there is no direct correlation of peptide function with lipid affinity. Fluorescence studies suggested that, although the peptides bind phospholipids similarly, the Trp residue in 4F, 3F-1, and 3F-2 is less motionally restricted than in 3F(3) and 3F(14). Based on these results and molecular modeling studies, we propose that the arrangement of aromatic residues in class A amphipathic helical molecules regulates entry of reactive oxygen species into peptide-phospholipid complexes, thereby reducing the extent of monocyte chemotaxis, an important step in atherosclerosis.
- Published
- 2004
- Full Text
- View/download PDF
26. Alpha-helix formation is required for high affinity binding of human apolipoprotein A-I to lipids.
- Author
-
Saito H, Dhanasekaran P, Nguyen D, Deridder E, Holvoet P, Lund-Katz S, and Phillips MC
- Subjects
- Chromatography, Gel, Circular Dichroism, Humans, Phosphatidylcholines metabolism, Protein Structure, Secondary, Spectrophotometry, Ultraviolet, Apolipoprotein A-I metabolism, Liposomes metabolism
- Abstract
Apolipoprotein (apo) A-I is thought to undergo a conformational change during lipid association that results in the transition of random coil to alpha-helix. Using a series of deletion mutants lacking different regions along the molecule, we examined the contribution of alpha-helix formation in apoA-I to the binding to egg phosphatidylcholine (PC) small unilamellar vesicles (SUV). Binding isotherms determined by gel filtration showed that apoA-I binds to SUV with high affinity and deletions in the C-terminal region markedly decrease the affinity. Circular dichroism measurements demonstrated that binding to SUV led to an increase in alpha-helix content, but the helix content was somewhat less than in reconstituted discoidal PC.apoA-I complexes for all apoA-I variants, suggesting that the helical structure of apoA-I on SUV is different from that in discs. Isothermal titration calorimetry showed that the binding of apoA-I to SUV is accompanied by a large exothermic heat and deletions in the C-terminal regions greatly decrease the heat. Analysis of the rate of release of heat on binding, as well as the kinetics of quenching of tryptophan fluorescence by brominated PC, indicated that the opening of the N-terminal helix bundle is a rate-limiting step in apoA-I binding to the SUV surface. Significantly, the correlation of thermodynamic parameters of binding with the increase in the number of helical residues revealed that the contribution of alpha-helix formation upon lipid binding to the enthalpy and the free energy of the binding of apoA-I is -1.1 and -0.04 kcal/mol per residue, respectively. These results indicate that alpha-helix formation, especially in the C-terminal regions, provides the energetic source for high affinity binding of apoA-I to lipids.
- Published
- 2004
- Full Text
- View/download PDF
27. Helix orientation of the functional domains in apolipoprotein e in discoidal high density lipoprotein particles.
- Author
-
Narayanaswami V, Maiorano JN, Dhanasekaran P, Ryan RO, Phillips MC, Lund-Katz S, and Davidson WS
- Subjects
- Apolipoproteins E genetics, Circular Dichroism, Humans, Lipid Metabolism, Lipids chemistry, Mutagenesis, Site-Directed, Protein Binding, Protein Structure, Secondary, Protein Structure, Tertiary, Thrombin chemistry, Thrombin metabolism, Trifluoroethanol chemistry, Trifluoroethanol metabolism, Apolipoproteins E chemistry, Apolipoproteins E metabolism
- Abstract
Human apolipoprotein E (apoE) mediates high affinity binding to the low density lipoprotein receptor when present on a lipidated complex. In the absence of lipid, however, apoE does not bind the receptor. Whereas the x-ray structure of lipid-free apoE3 N-terminal (NT) domain is known, the structural organization of its lipid-associated, receptor-active conformation is poorly understood. To study the organization of apoE amphipathic alpha-helices in a lipid-associated state, single tryptophan-containing apoE3 variants were employed in fluorescence quenching studies. The relative positions of the Trp residues with respect to the phospholipid component of apoE/lipid particles were established from the degree of quenching by phospholipids bearing nitroxide groups at various positions along their fatty acyl chains. Four apoE3-NT variants bearing Trp reporter groups at positions 141, 148, 155, or 162 within helix 4 and two apoE3 variants containing single Trp at positions 257 or 264 in the C-terminal (CT) domain, were reconstituted into phospholipid-containing discoidal complexes. Parallax analysis revealed that each engineered Trp residue in helix 4 of apoE3-NT, as well as those in the CT domain of apoE, localized approximately 5 A from the center of the bilayer. Circular dichroism studies revealed that lipid association induces additional helix formation in apoE. Protease protection assays suggest the flexible loop segment between the NT and CT domains may transition from unstructured to helix upon lipid association. Taken together, these data support a model wherein the alpha-helices in the receptor-binding region and the CT domain of apoE align perpendicular to the fatty acyl chains of the phospholipid bilayer. In this alignment, the residues of helix 4 are arrayed in a positively charged, curved helical segment for optimal receptor interaction.
- Published
- 2004
- Full Text
- View/download PDF
28. Scavenger receptor class B type I-mediated cholesteryl ester-selective uptake and efflux of unesterified cholesterol. Influence of high density lipoprotein size and structure.
- Author
-
Thuahnai ST, Lund-Katz S, Dhanasekaran P, de la Llera-Moya M, Connelly MA, Williams DL, Rothblat GH, and Phillips MC
- Subjects
- Animals, COS Cells, Cell Membrane metabolism, DNA, Complementary metabolism, Electrophoresis, Polyacrylamide Gel, Humans, Lipid Metabolism, Lipids chemistry, Mutation, Protein Binding, Protein Conformation, Cholesterol metabolism, Cholesterol Esters metabolism, Lipoproteins, HDL metabolism
- Abstract
Scavenger receptor (SR)-BI catalyzes the selective uptake of cholesteryl ester (CE) from high density lipoprotein (HDL) by a two-step process that involves the following: 1) binding of HDL to the receptor and 2) diffusion of the CE molecules into the cell plasma membrane. We examined the effects of the size of discoidal HDL particles containing wild-type (WT) apoA-I on selective uptake of CE and efflux of cellular free (unesterified) cholesterol (FC) from COS-7 cells expressing SR-BI to determine the following: 1) the influence of apoA-I conformation on the lipid transfer process, and 2) the contribution of receptor binding-dependent processes to the overall efflux of cellular FC. Large (10 nm diameter) reconstituted HDL bound to SR-BI better (B(max) approximately 420 versus 220 ng of apoA-I/mg cell protein), delivered more CE, and promoted more FC efflux than small ( approximately 8 nm) particles. When normalized to the number of reconstituted HDL particles bound to the receptor, the efficiencies of either CE uptake or FC efflux with these particles were the same indicating that altering the conformation of WT apoA-I modulates binding to the receptor (step 1) but does not change the efficiency of the subsequent lipid transfer (step 2); this implies that binding induces an optimal alignment of the WT apoA-I.SR-BI complex so that the efficiency of lipid transfer is always the same. FC efflux to HDL is affected both by binding of HDL to SR-BI and by the ability of the receptor to perturb the packing of FC molecules in the cell plasma membrane.
- Published
- 2004
- Full Text
- View/download PDF
29. Effects of apolipoprotein A-I on ATP-binding cassette transporter A1-mediated efflux of macrophage phospholipid and cholesterol: formation of nascent high density lipoprotein particles.
- Author
-
Liu L, Bortnick AE, Nickel M, Dhanasekaran P, Subbaiah PV, Lund-Katz S, Rothblat GH, and Phillips MC
- Subjects
- ATP Binding Cassette Transporter 1, Animals, Apolipoprotein A-I metabolism, Cell Membrane metabolism, Cells, Cultured, Chromatography, Gel, Cyclic AMP metabolism, Humans, Kinetics, Mice, Phosphatidylcholines metabolism, Protein Structure, Tertiary, Sphingomyelins metabolism, Up-Regulation, ATP-Binding Cassette Transporters metabolism, Apolipoprotein A-I physiology, Cholesterol metabolism, Lipoproteins, HDL metabolism, Macrophages metabolism, Phospholipids metabolism
- Abstract
The mechanism of formation of high density lipoprotein (HDL) particles by the action of ATP-binding cassette transporter A1 (ABCA1) is not defined completely. To address this issue, we monitored efflux to apoA-I of phosphatidylcholine (PC), sphingomyelin (SM), and unesterified (free) cholesterol (FC) from J774 macrophages, in which ABCA1 is up-regulated, and investigated the nature of the particles formed. The various apoA-I/lipid particles appearing in the extracellular medium were separated by gel filtration chromatography. The presence of apoA-I in the extracellular medium led to the simultaneous formation of more than one type of poorly lipidated apoA-I-containing particle: there were 9- and 12-nm diameter particles containing approximately 3:1 and 1:1 phospholipid/FC (mol/mol), respectively, which were present together with 6-nm monomeric apoA-I. Removal of the C-terminal alpha-helix (residues 223-243) of apoA-I reduced phospholipid and FC efflux and prevented formation of the 9- and 12-nm HDL particles; the apoA-I variant formed larger particles that eluted in the void volume. FC loading of the J774 cells also led to the formation of larger apoA-I-containing particles that were highly enriched in FC. Besides creating HDL particles, ABCA1 mediated release of larger (20-450-nm diameter) FC-rich particles that were not involved in HDL formation and that are probably membrane vesicles. These particles contained 1:1 PC/SM in contrast to the HDL particles, which contained 2:1 PC/SM. This is consistent with lipid raft and non-raft plasma membrane domains being involved primarily in ABCA1-mediated vesicle release and nascent HDL formation, respectively.
- Published
- 2003
- Full Text
- View/download PDF
30. Effects of polymorphism on the lipid interaction of human apolipoprotein E.
- Author
-
Saito H, Dhanasekaran P, Baldwin F, Weisgraber KH, Phillips MC, and Lund-Katz S
- Subjects
- Anilino Naphthalenesulfonates pharmacology, Apolipoproteins E metabolism, Calorimetry, Dose-Response Relationship, Drug, Fluorescent Dyes pharmacology, Humans, Kinetics, Mutation, Protein Binding, Protein Isoforms, Protein Structure, Tertiary, Spectrometry, Fluorescence, Temperature, Thermodynamics, Time Factors, Apolipoproteins E genetics, Lipid Metabolism, Polymorphism, Genetic
- Abstract
ApoE exists as three common isoforms, apoE2, apoE3, and apoE4; apoE2 and apoE3 preferentially bind to high density lipoproteins, whereas apoE4 prefers very low density lipoproteins (VLDL). To understand the molecular basis for the different lipoprotein distributions of these isoforms in human plasma, we examined the lipid-binding properties of the apoE isoforms and some mutants using lipid emulsions. With both large (120 nm) and small (35 nm) emulsion particles, the binding affinity of apoE4 was much higher than that of apoE2 and apoE3, whereas the maximal binding capacities were similar among the three isoforms. The 22-kDa N-terminal fragment of apoE4 displayed a much higher binding capacity than did apoE2 and apoE3. The apoE4(E255A) mutant, which has no electrostatic interaction between Arg61 and Glu255, showed binding behavior similar to that of apoE3, indicating that N- and C-terminal domain interaction in apoE4 is responsible for its high affinity for lipid. In addition, the apoE3(P267A) mutant, which is postulated to contain a long alpha-helix in the C-terminal domain, had significantly decreased binding capacities for both sizes of emulsion particle, suggesting that the apoE4 preference for VLDL is not due to a stabilized long alpha-helical structure. Isothermal titration calorimetry measurements showed that there is no significant difference in thermodynamic parameters for emulsion binding among the apoE isoforms. However, fluorescence measurements of 8-anilino-1-naphthalenesulfonic acid binding to apoE indicated that apoE4 has more exposed hydrophobic surface compared with apoE3 mainly due to the different tertiary organization of the C-terminal domain. The less organized structure in the C-terminal domain of apoE4 leads to the higher affinity for lipid, contributing to its preferential association with VLDL. In fact, we found that apoE4 binds to VLDL with higher affinity compared with apoE3.
- Published
- 2003
- Full Text
- View/download PDF
31. Domain structure and lipid interaction in human apolipoproteins A-I and E, a general model.
- Author
-
Saito H, Dhanasekaran P, Nguyen D, Holvoet P, Lund-Katz S, and Phillips MC
- Subjects
- Apolipoprotein A-I genetics, Apolipoprotein A-I metabolism, Apolipoproteins E metabolism, Circular Dichroism, Humans, Lipid Metabolism, Mutation, Protein Binding, Protein Denaturation, Protein Structure, Secondary, Protein Structure, Tertiary, Sequence Deletion, Apolipoprotein A-I chemistry, Apolipoproteins E chemistry, Models, Molecular, Phosphatidylcholines metabolism
- Abstract
Detailed structural information on human exchangeable apolipoproteins (apo) is required to understand their functions in lipid transport. Using a series of deletion mutants that progressively lacked different regions along the molecule, we probed the structural organization of lipid-free human apoA-I and the role of different domains in lipid binding, making comparisons to apoE, which is a member of the same gene family and known to have two structural domains. Measurements of alpha-helix content by CD in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that deletion of the amino-terminal or central regions disrupts the tertiary organization, whereas deletion of the carboxyl terminus has no effect on stability and induces a more cooperative structure. These data are consistent with the lipid-free apoA-I molecule being organized into two structural domains similar to apoE; the amino-terminal and central parts form a helix bundle, whereas the carboxyl-terminal alpha-helices form a separate, less organized structure. The binding of the apoA-I variants to lipid emulsions is modulated by reorganization of the helix bundle structure, because the rate of release of heat on binding is inversely correlated with the stability of the helix bundle. Based on these observations, we propose that there is a two-step mechanism for lipid binding of apoA-I: apoA-I initially binds to a lipid surface through amphipathic alpha-helices in the carboxyl-terminal domain, followed by opening of the helix bundle in the amino-terminal domain. Because apoE behaves similarly, this mechanism is probably a general feature for lipid interaction of other exchangeable apolipoproteins, such as apoA-IV.
- Published
- 2003
- Full Text
- View/download PDF
32. Characterization of the heparin binding sites in human apolipoprotein E.
- Author
-
Saito H, Dhanasekaran P, Nguyen D, Baldwin F, Weisgraber KH, Wehrli S, Phillips MC, and Lund-Katz S
- Subjects
- Amino Acids, Basic, Apolipoproteins E genetics, Apolipoproteins E metabolism, Binding Sites, Heparin metabolism, Humans, Lipids chemistry, Mutation, Nuclear Magnetic Resonance, Biomolecular, Phosphatidylcholines chemistry, Protein Binding, Protein Structure, Tertiary, Apolipoproteins E chemistry, Heparin chemistry
- Abstract
Apolipoprotein (apo) E mediates lipoprotein remnant clearance via interaction with cell-surface heparan sulfate proteoglycans. Both the 22-kDa N-terminal domain and 10-kDa C-terminal domain of apoE contain a heparin binding site; the N-terminal site overlaps with the low density lipoprotein receptor binding region and the C-terminal site is undefined. To understand the molecular details of the apoE-heparin interaction, we defined the microenvironments of all 12 lysine residues in intact apoE3 and examined their relative contributions to heparin binding. Nuclear magnetic resonance measurements showed that, in apoE3-dimyristoyl phosphatidylcholine discs, Lys-143 and -146 in the N-terminal domain and Lys-233 in the C-terminal domain have unusually low pK(a) values, indicating high positive electrostatic potential around these residues. Binding experiments using heparin-Sepharose gel demonstrated that the lipid-free 10-kDa fragment interacted strongly with heparin and a point mutation K233Q largely abolished the binding, indicating that Lys-233 is involved in heparin binding and that an unusually basic lysine microenvironment is critical for the interaction with heparin. With lipidated apoE3, it is confirmed that the Lys-233 site is completely masked and the N-terminal site mediates heparin binding. In addition, mutations of the two heparin binding sites in intact apoE3 demonstrated the dominant role of the N-terminal site in the heparin binding of apoE even in the lipid-free state. These results suggest that apoE interacts predominately with cell-surface heparan sulfate proteoglycans through the N-terminal binding site. However, Lys-233 may be involved in the binding of apoE to certain cell-surface sites, such as the protein core of biglycan.
- Published
- 2003
- Full Text
- View/download PDF
33. Effects of enrichment of fibroblasts with unesterified cholesterol on the efflux of cellular lipids to apolipoprotein A-I.
- Author
-
Gillotte-Taylor K, Nickel M, Johnson WJ, Francone OL, Holvoet P, Lund-Katz S, Rothblat GH, and Phillips MC
- Subjects
- ATP Binding Cassette Transporter 1, ATP-Binding Cassette Transporters metabolism, Biological Transport, Cell Membrane metabolism, Choline metabolism, Cyclic AMP metabolism, Dose-Response Relationship, Drug, Humans, Kinetics, Models, Chemical, Phospholipids metabolism, Protein Binding, RNA, Messenger metabolism, Time Factors, Up-Regulation, Apolipoprotein A-I metabolism, Cholesterol pharmacology, Fibroblasts metabolism, Lipid Metabolism
- Abstract
This study elucidates the factors underlying the enhancement in efflux of human fibroblast unesterified cholesterol and phospholipid (PL) by lipid-free apolipoprotein (apo) A-I that is induced by cholesterol enrichment of the cells. Doubling the unesterified cholesterol content of the plasma membrane by incubation for 24 h with low density lipoprotein and lipid/cholesterol dispersions increases the pools of PL and cholesterol available for removal by apoA-I from about 0.8-5%; the initial rates of mass release of cholesterol and PL are both increased about 6-fold. Expression of the ATP binding cassette transporter A1 (ABCA1) is critical for this increased efflux of lipids, and cholesterol loading of the fibroblasts over 24 h increases ABCA1 mRNA about 12-fold. The presence of more ABCA1 and cholesterol in the plasma membrane results in a 2-fold increase in the level of specific binding of apoA-I to the cells with no change in binding affinity. Characterization of the species released from either control or cholesterol-enriched cells indicates that the plasma membrane domains from which lipids are removed are cholesterol-enriched with respect to the average plasma membrane composition. Cholesterol enrichment of fibroblasts also affects PL synthesis, and this leads to enhanced release of phosphatidylcholine (PC) relative to sphingomyelin (SM); the ratios of PC to SM solubilized from control and cholesterol-enriched fibroblasts are approximately 2/1 and 5/1, respectively. Biosynthesis of PC is critical for this preferential release of PC and the enhanced cholesterol efflux because inhibition of PC synthesis by choline depletion reduces cholesterol efflux from cholesterol-enriched cells. Overall, it is clear that enrichment of fibroblasts with unesterified cholesterol enhances efflux of cholesterol and PL to apoA-I because of three effects, 1) increased PC biosynthesis, 2) increased PC transport via ABCA1, and 3) increased cholesterol in the plasma membrane.
- Published
- 2002
- Full Text
- View/download PDF
34. Scavenger receptor class B, type I-mediated uptake of various lipids into cells. Influence of the nature of the donor particle interaction with the receptor.
- Author
-
Thuahnai ST, Lund-Katz S, Williams DL, and Phillips MC
- Subjects
- Animals, COS Cells, Cholesterol, HDL metabolism, Humans, Receptors, Scavenger, Scavenger Receptors, Class B, CD36 Antigens physiology, Lipid Metabolism, Membrane Proteins, Receptors, Immunologic, Receptors, Lipoprotein
- Abstract
Scavenger receptor (SR)-BI is the first molecularly defined receptor for high density lipoprotein (HDL) and it can mediate the selective uptake of cholesteryl ester into cells. To elucidate the molecular mechanisms by which SR-BI facilitates lipid uptake, we examined the connection between lipid donor particle binding and lipid uptake using kidney COS-7 cells transiently transfected with SR-BI. We systematically compared the uptake of [(3)H]cholesteryl oleoyl ether (CE) and [(14)C]sphingomyelin (SM) from apolipoprotein (apo) A-I-containing reconstituted HDL (rHDL) particles and apo-free lipid donor particles. Although both types of lipid donor could bind to SR-BI, only apo-containing lipid donors exhibited preferential delivery of CE over SM (i.e. nonstoichiometric lipid uptake). In contrast, apo-free lipid donor particles (phospholipid unilamellar vesicles, lipid emulsion particles) gave rise to stoichiometric lipid uptake due to interaction with SR-BI. This apparent whole particle uptake was not due to endocytosis, but rather fusion of the lipid components of the lipid donor with the cell plasma membrane; this process is perhaps mediated by a fusogenic motif in the extracellular domain of SR-BI. The interaction of apoA-I with SR-BI not only prevents fusion of the lipid donor with the plasma membrane but also allows the optimal selective lipid uptake. A comparison of rHDL particles containing apoA-I and apoE-3 showed that while both particles bound equally well to SR-BI, the apoA-I particle gave approximately 2-fold greater CE selective uptake. Catabolism of all major HDL lipids can occur via SR-BI with the relative selective uptake rate constants for CE, free cholesterol, triglycerides (triolein), and phosphatidylcholine being 1, 1.6, 0.7, and 0.2, respectively. It follows that a putative nonpolar channel created by SR-BI between the bound HDL particle and the cell plasma membrane is better able to accommodate the uptake of neutral lipids (e.g. cholesterol) relative to polar phospholipids.
- Published
- 2001
- Full Text
- View/download PDF
35. Lipid binding-induced conformational change in human apolipoprotein E. Evidence for two lipid-bound states on spherical particles.
- Author
-
Saito H, Dhanasekaran P, Baldwin F, Weisgraber KH, Lund-Katz S, and Phillips MC
- Subjects
- Apolipoproteins E chemistry, Calorimetry, Humans, Protein Conformation, Thermodynamics, Apolipoproteins E metabolism, Lipid Metabolism
- Abstract
Apolipoprotein (apo) E contains two structural domains, a 22-kDa (amino acids 1-191) N-terminal domain and a 10-kDa (amino acids 223-299) C-terminal domain. To better understand apoE-lipid interactions on lipoprotein surfaces, we determined the thermodynamic parameters for binding of apoE4 and its 22- and 10-kDa fragments to triolein-egg phosphatidylcholine emulsions using a centrifugation assay and titration calorimetry. In both large (120 nm) and small (35 nm) emulsion particles, the binding affinities decreased in the order 10-kDa fragment approximately 34-kDa intact apoE4 > 22-kDa fragment, whereas the maximal binding capacity of intact apoE4 was much larger than those of the 22- and 10-kDa fragments. These results suggest that at maximal binding, the binding behavior of intact apoE4 is different from that of each fragment and that the N-terminal domain of intact apoE4 does not contact lipid. Isothermal titration calorimetry measurements showed that apoE binding to emulsions was an exothermic process. Binding to large particles is enthalpically driven, and binding to small particles is entropically driven. At a low surface concentration of protein, the binding enthalpy of intact apoE4 (-69 kcal/mol) was approximately equal to the sum of the enthalpies for the 22- and 10-kDa fragments, indicating that both the 22- and 10-kDa fragments interact with lipids. In a saturated condition, however, the binding enthalpy of intact apoE4 (-39 kcal/mol) was less exothermic and rather similar to that of each fragment, supporting the hypothesis that only the C-terminal domain of intact apoE4 binds to lipid. We conclude that the N-terminal four-helix bundle can adopt either open or closed conformations, depending upon the surface concentration of emulsion-bound apoE.
- Published
- 2001
- Full Text
- View/download PDF
36. New insights into the heparan sulfate proteoglycan-binding activity of apolipoprotein E.
- Author
-
Libeu CP, Lund-Katz S, Phillips MC, Wehrli S, Hernáiz MJ, Capila I, Linhardt RJ, Raffaï RL, Newhouse YM, Zhou F, and Weisgraber KH
- Subjects
- Animals, Apolipoproteins E chemistry, Arginine chemistry, Binding Sites, Biotinylation, Brain metabolism, Cattle, Chromatography, Affinity, Dose-Response Relationship, Drug, Glucosamine chemistry, Heparan Sulfate Proteoglycans chemistry, Heparin chemistry, Heparin metabolism, Humans, Hydrogen-Ion Concentration, Kinetics, Liver metabolism, Lysine chemistry, Magnetic Resonance Spectroscopy, Models, Molecular, Mutation, Polysaccharides metabolism, Protein Binding, Serine chemistry, Streptavidin chemistry, Surface Plasmon Resonance, Time Factors, Apolipoproteins E metabolism, Heparan Sulfate Proteoglycans metabolism
- Abstract
Defective binding of apolipoprotein E (apoE) to heparan sulfate proteoglycans (HSPGs) is associated with increased risk of atherosclerosis due to inefficient clearance of lipoprotein remnants by the liver. The interaction of apoE with HSPGs has also been implicated in the pathogenesis of Alzheimer's disease and may play a role in neuronal repair. To identify which residues in the heparin-binding site of apoE and which structural elements of heparan sulfate interact, we used a variety of approaches, including glycosaminoglycan specificity assays, (13)C nuclear magnetic resonance, and heparin affinity chromatography. The formation of the high affinity complex required Arg-142, Lys-143, Arg-145, Lys-146, and Arg-147 from apoE and N- and 6-O-sulfo groups of the glucosamine units from the heparin fragment. As shown by molecular modeling, using a high affinity binding octasaccharide fragment of heparin, these findings are consistent with a binding mode in which five saccharide residues of fully sulfated heparan sulfate lie in a shallow groove of the alpha-helix that contains the HSPG-binding site (helix 4 of the four-helix bundle of the 22-kDa fragment). This groove is lined with residues Arg-136, Ser-139, His-140, Arg-142, Lys-143, Arg-145, Lys-146, and Arg-147. In the model, all of these residues make direct contact with either the 2-O-sulfo groups of the iduronic acid monosaccharides or the N- and 6-O-sulfo groups of the glucosamine sulfate monosaccharides. This model indicates that apoE has an HSPG-binding site highly complementary to heparan sulfate rich in N- and O-sulfo groups such as that found in the liver and the brain.
- Published
- 2001
- Full Text
- View/download PDF
37. Effects of lipid interaction on the lysine microenvironments in apolipoprotein E.
- Author
-
Lund-Katz S, Zaiou M, Wehrli S, Dhanasekaran P, Baldwin F, Weisgraber KH, and Phillips MC
- Subjects
- Apolipoproteins E chemistry, Apolipoproteins E genetics, Mutagenesis, Site-Directed, Nuclear Magnetic Resonance, Biomolecular methods, Protein Conformation, Apolipoproteins E metabolism, Lipid Metabolism, Lysine metabolism
- Abstract
Lysines in apolipoprotein (apo) E are key factors in the binding of apoE to the low density lipoprotein receptor, and high affinity binding requires that apoE be associated with lipid. To gain insight into this effect, we examined the microenvironments of the eight lysines in the 22-kDa fragment of apoE3 (residues 1-191) in the lipid-free and lipid-associated states. As shown by (1)H,(13)C heteronuclear single quantum coherence nuclear magnetic resonance, lysine resonances in the lipid-free fragment were poorly resolved over a wide pH range, whereas in apoE3.dimyristoyl phosphatidylcholine (DMPC) discs, the lysine microenvironments and protein conformation were significantly altered. Sequence-specific assignments of the lysine resonances in the spectrum of the lipidated 22-kDa fragment were made. In the lipid-free protein, six lysines could be resolved, and all had pK(a) values above 10. In apoE3.DMPC complexes, however, all eight lysines were resolved, and the pK(a) values were 9.2-11.1. Lys-143 and Lys-146, both in the receptor binding region in helix 4, had unusually low pK(a) values of 9.5 and 9.2, respectively, likely as a result of local increases in positive electrostatic potential with lipid association. Shift reagent experiments with potassium ferricyanide showed that Lys-143 and Lys-146 were much more accessible to the ferricyanide anion in the apoE3.DMPC complex than in the lipid-free state. The angle of the nonpolar face of helix 4 is smaller than the angles of helices 1, 2, and 3, suggesting that helix 4 cannot penetrate as deeply into the DMPC acyl chains at the edge of the complex and that its polar face protrudes from the edge of the disc. This increased exposure and the greater positive electrostatic potential created by interaction with DMPC may explain why lipid association is required for high affinity binding of apoE to the low density lipoprotein receptor.
- Published
- 2000
- Full Text
- View/download PDF
38. Binding and cross-linking studies show that scavenger receptor BI interacts with multiple sites in apolipoprotein A-I and identify the class A amphipathic alpha-helix as a recognition motif.
- Author
-
Williams DL, de La Llera-Moya M, Thuahnai ST, Lund-Katz S, Connelly MA, Azhar S, Anantharamaiah GM, and Phillips MC
- Subjects
- Amino Acid Motifs, Animals, Binding Sites, CD36 Antigens chemistry, COS Cells, Cross-Linking Reagents, Humans, Protein Binding, Receptors, Scavenger, Scavenger Receptors, Class A, Scavenger Receptors, Class B, Apolipoprotein A-I metabolism, CD36 Antigens metabolism, Membrane Proteins, Receptors, Immunologic, Receptors, Lipoprotein
- Abstract
Scavenger receptor, class B, type I (SR-BI) mediates the selective uptake of high density lipoprotein (HDL) cholesteryl ester without the uptake and degradation of the particle. In transfected cells SR-BI recognizes HDL, low density lipoprotein (LDL) and modified LDL, protein-free lipid vesicles containing anionic phospholipids, and recombinant lipoproteins containing apolipoprotein (apo) A-I, apoA-II, apoE, or apoCIII. The molecular basis for the recognition of such diverse ligands by SR-BI is unknown. We have used direct binding analysis and chemical cross-linking to examine the interaction of murine (m) SR-BI with apoA-I, the major protein of HDL. The results show that apoA-I in apoA-I/palmitoyl-oleoylphosphatidylcholine discs, HDL(3), or in a lipid-free state binds to mSR-BI with high affinity (K(d) congruent with 5-8 microgram/ml). ApoA-I in each of these forms was efficiently cross-linked to cell surface mSR-BI, indicating that direct protein-protein contacts are the predominant feature that drives the interaction between HDL and mSR-BI. When complexed with dimyristoylphosphatidylcholine, the N-terminal and C-terminal CNBr fragments of apoA-I each bound to SR-BI in a saturable, high affinity manner, and each cross-linked efficiently to mSR-BI. Thus, mSR-BI recognizes multiple sites in apoA-I. A model class A amphipathic alpha-helix, 37pA, also showed high affinity binding and cross-linking to mSR-BI. These studies identify the amphipathic alpha-helix as a recognition motif for SR-BI and lead to the hypothesis that mSR-BI interacts with HDL via the amphipathic alpha-helical repeat units of apoA-I. This hypothesis explains the interaction of SR-BI with a wide variety of apolipoproteins via a specific secondary structure, the class A amphipathic alpha-helix, that is a common structural motif in the apolipoproteins of HDL, as well as LDL.
- Published
- 2000
- Full Text
- View/download PDF
39. Apolipoprotein A-I structural modification and the functionality of reconstituted high density lipoprotein particles in cellular cholesterol efflux.
- Author
-
Gillotte KL, Davidson WS, Lund-Katz S, Rothblat GH, and Phillips MC
- Subjects
- Animals, Biological Transport, Humans, L Cells, Membrane Lipids metabolism, Mice, Microscopy, Electron, Protein Structure, Secondary, Recombinant Proteins, Sequence Deletion, Apolipoprotein A-I chemistry, Cholesterol metabolism, Lipoproteins, HDL chemistry
- Abstract
The role of HDL and its major protein constituent, apolipoprotein (apo) A-I, in promoting the removal of excess cholesterol from cultured cells has been well established; however, the mechanisms by which this occurs are not completely understood. To address the effects of apoA-I modification on cellular unesterified (free) cholesterol (FC) efflux, three recombinant human apoA-I deletion mutants and plasma apoA-I were combined with 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) and FC to make reconstituted high density lipoprotein (rHDL) discoidal complexes. These particles were characterized structurally and for their efficiency as acceptors of mouse L-cell fibroblast cholesterol. The deletion mutant proteins lacked NH2-terminal (apoA-I (Delta44-126)), central (apoA-I (Delta139-170)), or COOH-terminal (apoA-I (Delta190-243)) domains of apoA-I. The three deletion mutants all displayed lipid-binding abilities and formed discoidal complexes that were similar in major diameter (13.2 +/- 1.5 nm) to those formed by human apoA-I when reconstituted at a 100:5:1 (POPC:FC:protein) mole ratio. Gel filtration profiles indicated unreacted protein in the preparation made with apoA-I (Delta190-243), which is consistent with the COOH terminus portion of apoA-I being an important determinant of lipid binding. Measurements of the percent alpha-helix content of the proteins, as well as the number of protein molecules per rHDL particle, gave an indication of the arrangement of the deletion mutant proteins in the discoidal complexes. The rHDL particles containing the deletion mutants had more molecules of protein present than particles containing intact apoA-I, to the extent that a similar number of helical segments was incorporated into each of the discoidal species. Comparison of the experimentally determined number of helical segments with an estimate of the available space indicated that the deletion mutant proteins are probably more loosely arranged than apoA-I around the edge of the rHDL. The abilities of the complexes to remove radiolabeled FC were compared in experiments using cultured mouse L-cell fibroblasts. All four discoidal complexes displayed similar abilities to remove FC from the plasma membrane of L-cells when compared at an acceptor concentration of 50 microg of phospholipid/ml. Thus, none of the deletions imposed in this study notably altered the ability of the rHDL particles to participate in cellular FC efflux. These results suggest that efficient apoA-I-mediated FC efflux requires the presence of amphipathic alpha-helical segments but is not dependent on specific helical segments.
- Published
- 1996
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.