222 results on '"Lin S"'
Search Results
2. Inhibin α-Subunit N Terminus Interacts with Activin Type IB Receptor to Disrupt Activin Signaling
- Author
-
Zhu, Jie, primary, Lin, S. Jack, additional, Zou, Chao, additional, Makanji, Yogeshwar, additional, Jardetzky, Theodore S., additional, and Woodruff, Teresa K., additional
- Published
- 2012
- Full Text
- View/download PDF
3. Inhibin α-Subunit N Terminus Interacts with Activin Type IB Receptor to Disrupt Activin Signaling.
- Author
-
Jie Zhu, Lin, S. Jack, Chao Zou, Makanji, Yogeshwar, Jardetzky, Theodore S., and Woodruff, Teresa K.
- Subjects
- *
PEPTIDE hormones , *OVARIES , *ACTIVIN , *PITUITARY gland , *INHIBIN , *CELL lines - Abstract
Inhibin is a heterodimeric peptide hormone produced in the ovary that antagonizes activin signaling and FSH synthesis in the pituitary. The inhibin β-subunit interacts with the activin type II receptor (ActRII) to functionally antagonize activin. The inhibin α-subunit mature domain (N terminus) arose relatively early during the evolution of the hormone, and inhibin function is decreased by an antibody directed against the α-subunit N-terminal extension region or by deletion of the N-terminal region. We hypothesized that theα-subunit N-terminal extension region interacts with the activin type I receptor (ALK4) to antagonize activin signaling in the pituitary. Human or chicken free α-subunit inhibited activin signaling in a pituitary gonadotropederived cell line (LβT2) in a dose-dependent manner, whereas an N-terminal extension deletion mutant did not. An α-subunit N-terminal peptide, but not a control peptide, was able to inhibit activin A signaling and decrease activin-stimulated FSH synthesis. Biotinylated inhibin A, but not activin A, bound ALK4. Soluble ALK4-ECD bioneutralized human free α-subunit in LβT2 cells, but did not affect activin A function. Competitive binding ELISAs with N-terminal mutants and an N-terminal region peptide confirmed that this region is critical for direct interaction of theα-subunit with ALK4. These data expand our understanding of how endocrine inhibin achieves potent antagonism of local, constitutive activin action in the pituitary, through a combined mechanism of competitive binding of both ActRII and ALK4 by each subunit of the inhibin heterodimer, in conjunction with the co-receptor betaglycan, to block activin receptor-ligand binding, complex assembly, and downstream signaling. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
4. Superoxide dismutase undergoes proteolysis and fragmentation following oxidative modification and inactivation.
- Author
-
Salo, D C, primary, Pacifici, R E, additional, Lin, S W, additional, Giulivi, C, additional, and Davies, K J, additional
- Published
- 1990
- Full Text
- View/download PDF
5. Demonstration of a slow conformational change in liver glucokinase by fluorescence spectroscopy.
- Author
-
Lin, S X, primary and Neet, K E, additional
- Published
- 1990
- Full Text
- View/download PDF
6. Expression and characterization of human factor IX and factor IX-factor X chimeras in mouse C127 cells.
- Author
-
Lin, S W, primary, Smith, K J, additional, Welsch, D, additional, and Stafford, D W, additional
- Published
- 1990
- Full Text
- View/download PDF
7. An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor.
- Author
-
Trent, M S, Ribeiro, A A, Lin, S, Cotter, R J, and Raetz, C R
- Abstract
Attachment of the cationic sugar 4-amino-4-deoxy-l-arabinose (l-Ara4N) to lipid A is required for the maintenance of polymyxin resistance in Escherichia coli and Salmonella typhimurium. The enzymes that synthesize l-Ara4N and transfer it to lipid A have not been identified. We now report an inner membrane enzyme, expressed in polymyxin-resistant mutants, that adds one or two l-Ara4N moieties to lipid A or its immediate precursors. No soluble factors are required. A gene located near minute 51 on the S. typhimurium and E. coli chromosomes (previously termed orf5, pmrK, or yfbI) encodes the l-Ara4N transferase. The enzyme, renamed ArnT, consists of 548 amino acid residues in S. typhimurium with 12 possible membrane-spanning regions. ArnT displays distant similarity to yeast protein mannosyltransferases. ArnT adds two l-Ara4N units to lipid A precursors containing a Kdo disaccharide. However, as shown by mass spectrometry and NMR spectroscopy, it transfers only a single l-Ara4N residue to the 1-phosphate moiety of lipid IV(A), a precursor lacking Kdo. Proteins with full-length sequence similarity to ArnT are present in genomes of other bacteria thought to synthesize l-Ara4N-modified lipid A, including Pseudomonas aeruginosa and Yersinia pestis. As shown in the following article (Trent, M. S., Ribeiro, A. A., Doerrler, W. T., Lin, S., Cotter, R. J., and Raetz, C. R. H. (2001) J. Biol. Chem. 276, 43132-43144), ArnT utilizes the novel lipid undecaprenyl phosphate-alpha-l-Ara4N as its sugar donor, suggesting that l-Ara4N transfer to lipid A occurs on the periplasmic side of the inner membrane.
- Published
- 2001
- Full Text
- View/download PDF
8. Accumulation of a polyisoprene-linked amino sugar in polymyxin-resistant Salmonella typhimurium and Escherichia coli: structural characterization and transfer to lipid A in the periplasm.
- Author
-
Trent, M S, Ribeiro, A A, Doerrler, W T, Lin, S, Cotter, R J, and Raetz, C R
- Abstract
Polymyxin-resistant mutants of Escherichia coli and Salmonella typhimurium accumulate a novel minor lipid that can donate 4-amino-4-deoxy-l-arabinose units (l-Ara4N) to lipid A. We now report the purification of this lipid from a pss(-) pmrA(C) mutant of E. coli and assign its structure as undecaprenyl phosphate-alpha-l-Ara4N. Approximately 0.2 mg of homogeneous material was isolated from an 8-liter culture by solvent extraction, followed by chromatography on DEAE-cellulose, C18 reverse phase resin, and silicic acid. Matrix-assisted laser desorption ionization/time of flight mass spectrometry in the negative mode yielded a single species [M - H](-) at m/z 977.5, consistent with undecaprenyl phosphate-alpha-l-Ara4N (M(r) = 978.41). (31)P NMR spectroscopy showed a single phosphorus atom at -0.44 ppm characteristic of a phosphodiester linkage. Selective inverse decoupling difference spectroscopy demonstrated that the undecaprenyl phosphate group is attached to the anomeric carbon of the l-Ara4N unit. One- and two-dimensional (1)H NMR studies confirmed the presence of a polyisoprene chain and a sugar moiety with chemical shifts and coupling constants expected for an equatorially substituted arabinopyranoside. Heteronuclear multiple-quantum coherence spectroscopy analysis demonstrated that a nitrogen atom is attached to C-4 of the sugar residue. The purified donor supports in vitro conversion of lipid IV(A) to lipid II(A), which is substituted with a single l-Ara4N moiety. The identification of undecaprenyl phosphate-alpha-l-Ara4N implies that l-Ara4N transfer to lipid A occurs in the periplasm of polymyxin-resistant strains, and establishes a new enzymatic pathway by which Gram-negative bacteria acquire antibiotic resistance.
- Published
- 2001
- Full Text
- View/download PDF
9. Lipid A modifications in polymyxin-resistant Salmonella typhimurium: PMRA-dependent 4-amino-4-deoxy-L-arabinose, and phosphoethanolamine incorporation.
- Author
-
Zhou, Z, Ribeiro, A A, Lin, S, Cotter, R J, Miller, S I, and Raetz, C R
- Abstract
Lipid A of Salmonella typhimurium can be resolved into multiple molecular species. Many of these substances are more polar than the predominant hexa-acylated lipid A 1,4'-bisphosphate of Escherichia coli K-12. By using new isolation methods, we have purified six lipid A subtypes (St1 to St6) from wild type S. typhimurium. We demonstrate that these lipid A variants are covalently modified with one or two 4-amino-4-deoxy-l-arabinose (l-Ara4N) moieties. Each lipid A species with a defined set of polar modifications can be further derivatized with a palmitoyl moiety and/or a 2-hydroxymyristoyl residue in place of the secondary myristoyl chain at position 3'. The unexpected finding that St5 and St6 contain two l-Ara4N residues accounts for the anomalous structures of lipid A precursors seen in S. typhimurium mutants defective in 3-deoxy-d-manno-octulosonic acid biosynthesis in which only the 1-phosphate group is modified with the l-Ara4N moiety (Strain, S. M., Armitage, I. M., Anderson, L., Takayama, K., Quershi, N., and Raetz, C. R. H. (1985) J. Biol. Chem. 260, 16089-16098). Phosphoethanolamine (pEtN)-modified lipid A species are much less abundant than l-Ara4N containing forms in wild type S. typhimurium grown in broth but accumulate to high levels when l-Ara4N synthesis is blocked in pmrA(C)pmrE(-) and pmrA(C)pmrF(-) mutants. Purification and analysis of selected compounds demonstrate that one or two pEtN moieties may be present. Our findings show that S. typhimurium contains versatile enzymes capable of modifying both the 1- and 4'-phosphates of lipid A with l-Ara4N and/or pEtN groups. PmrA null mutants of S. typhimurium produce lipid A species without any pEtN or l-Ara4N substituents. However, PmrA is not needed for the incorporation of 2-hydroxymyristate or palmitate.
- Published
- 2001
- Full Text
- View/download PDF
10. Differential molecular assemblies underlie the dual function of Axin in modulating the WNT and JNK pathways.
- Author
-
Zhang, Y, Qiu, W J, Liu, D X, Neo, S Y, He, X, and Lin, S C
- Abstract
Axin is a multidomain scaffold protein that exerts a dual function in the Wnt signaling and MEKK1/JNK pathways. This raises a critical question as to whether Axin-based differential molecular assemblies exist and how these may act to coordinate the two separate pathways. Here we show that both wild-type glycogen synthase kinase-3 beta (GSK-3 beta) and kinase-dead GSK-3 beta-Y216F (capable of binding to Axin), but not GSK-3 beta-K85M (incapable of binding to Axin in mammalian cells), prevented MEKK1 binding to the Axin complex, thereby inhibiting JNK activation. We further show that casein kinase I epsilon also inhibited Axin-mediated JNK activation by competing against MEKK1 binding. In contrast, beta-catenin and adenomatous polyposis coli binding did not affect MEKK1 binding to the same Axin complex. This suggests that even when Axin is "switched" to activate the JNK pathway, it is still capable of sequestering free beta-catenin, which is a critical aspect for cellular homeostasis. Our results clearly demonstrate that differential molecular assemblies underlie the duality of Axin functions in the negative regulation of Wnt signaling and activation of the JNK MAPK pathway.
- Published
- 2001
- Full Text
- View/download PDF
11. Purification and mass spectrometry of six lipid A species from the bacterial endosymbiont Rhizobium etli. Demonstration of a conserved distal unit and a variable proximal portion.
- Author
-
Que, N L, Lin, S, Cotter, R J, and Raetz, C R
- Abstract
Lipid A of Rhizobium etli CE3 differs dramatically from that of other Gram-negative bacteria. Key features include the presence of an unusual C28 acyl chain, a galacturonic acid moiety at position 4', and an acylated aminogluconate unit in place of the proximal glucosamine. In addition, R. etli lipid A is reported to lack phosphate and acyloxyacyl residues. Most of these remarkable structural claims are consistent with our recent enzymatic studies. However, the proposed R. etli lipid A structure is inconsistent with the ability of the precursor (3-deoxy-D-manno-octulosonic acid)(2)-4'-(32)P-lipid IV(A) to accept a C28 chain in vitro (Brozek, K. A., Carlson, R. W., and Raetz, C. R. H. (1996) J. Biol. Chem. 271, 32126-32136). To re-evaluate the structure, CE3 lipid A was isolated by new chromatographic procedures. CE3 lipid A is now resolved into six related components. Aminogluconate is present in D-1, D-2, and E, whereas B and C contain the typical glucosamine disaccharide seen in lipid A of most other bacteria. All the components possess a peculiar acyloxyacyl moiety at position 2', which includes the ester-linked C28 chain. As judged by mass spectrometry, the distal glucosamine units of A through E are the same, but the proximal units are variable. As described in the accompanying article (Que, N. L. S., Ribeiro, A. A., and Raetz, C. R. H. (2000) J. Biol. Chem. 275, 28017-28027), the discovery of component B suggests a plausible enzymatic pathway for the biosynthesis of the aminogluconate residue found in species D-1, D-2, and E of R. etli lipid A. We suggest that the unusual lipid A species of R. etli might be essential during symbiosis with leguminous host plants.
- Published
- 2000
- Full Text
- View/download PDF
12. Immunological quantitation and localization of ACAT-1 and ACAT-2 in human liver and small intestine.
- Author
-
Chang, C C, Sakashita, N, Ornvold, K, Lee, O, Chang, E T, Dong, R, Lin, S, Lee, C Y, Strom, S C, Kashyap, R, Fung, J J, Farese, R V, Patoiseau, J F, Delhon, A, and Chang, T Y
- Abstract
By using specific anti-ACAT-1 antibodies in immunodepletion studies, we previously found that ACAT-1, a 50-kDa protein, plays a major catalytic role in the adult human liver, adrenal glands, macrophages, and kidneys but not in the intestine. Acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity in the intestine may be largely derived from a different ACAT protein. To test this hypothesis, we produced specific polyclonal anti-ACAT-2 antibodies that quantitatively immunodepleted human ACAT-2, a 46-kDa protein expressed in Chinese hamster ovary cells. In hepatocyte-like HepG2 cells, ACAT-1 comprises 85-90% of the total ACAT activity, with the remainder attributed to ACAT-2. In adult intestines, most of the ACAT activity can be immunodepleted by anti-ACAT-2. ACAT-1 and ACAT-2 do not form hetero-oligomeric complexes. In differentiating intestinal enterocyte-like Caco-2 cells, ACAT-2 protein content increases by 5-10-fold in 6 days, whereas ACAT-1 protein content remains relatively constant. In the small intestine, ACAT-2 is concentrated at the apices of the villi, whereas ACAT-1 is uniformly distributed along the villus-crypt axis. In the human liver, ACAT-1 is present in both fetal and adult hepatocytes. In contrast, ACAT-2 is evident in fetal but not adult hepatocytes. Our results collectively suggest that in humans, ACAT-2 performs significant catalytic roles in the fetal liver and in intestinal enterocytes.
- Published
- 2000
- Full Text
- View/download PDF
13. Sustained endothelial nitric-oxide synthase activation requires capacitative Ca2+ entry.
- Author
-
Lin, S, Fagan, K A, Li, K X, Shaul, P W, Cooper, D M, and Rodman, D M
- Abstract
Endothelial nitric-oxide synthase (eNOS), a Ca(2+)/calmodulin-dependent enzyme, is critical for vascular homeostasis. While eNOS is membrane-associated through its N-myristoylation, the significance of membrane association in locating eNOS near sources of Ca(2+) entry is uncertain. To assess the Ca(2+) source required for eNOS activation, chimera containing the full-length eNOS cDNA and HA-tagged aequorin sequence (EHA), and MHA (myristoylation-deficient EHA) were generated and transfected into COS-7 cells. The EHA chimera was primarily targeted to the plasma membrane while MHA was located intracellularly. Both constructs retained enzymatic eNOS activity and aequorin-mediated Ca(2+) sensitivity. The plasma membrane-associated EHA and intracellular MHA were compared in their ability to sense changes in local Ca(2+) concentration, demonstrating preferential sensitivity to Ca(2+) originating from intracellular pools (MHA) or from capacitative Ca(2+) entry (EHA). Measurements of eNOS activation in intact cells revealed that the eNOS enzymatic activity of EHA was more sensitive to Ca(2+) influx via capacitative Ca(2+) entry than intracellular release, whereas MHA eNOS activity was more responsive to intracellular Ca(2+) release. When eNOS activation by CCE was compared with that generated by an equal rise in [Ca(2+)](i) due to the Ca(2+) ionophore ionomycin, a 10-fold greater increase in NO production was found in the former condition. These results demonstrate that EHA and MHA chimera are properly targeted and retain full functions of eNOS and aequorin, and that capacitative Ca(2+) influx is the principle stimulus for sustained activation of eNOS on the plasma membrane in intact cells.
- Published
- 2000
14. HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-kappaB pathway.
- Author
-
Zhou, B P, Hu, M C, Miller, S A, Yu, Z, Xia, W, Lin, S Y, and Hung, M C
- Abstract
Overexpression of HER-2/neu correlates with poor survival of breast and ovarian cancer patients and induces resistance to tumor necrosis factor (TNF), which causes cancer cells to escape from host immune defenses. The mechanism of HER-2/neu-induced TNF resistance is unknown. Here we report that HER-2/neu activates Akt and NF-kappaB without extracellular stimulation. Blocking of the Akt pathway by a dominant-negative Akt sensitizes the HER-2/neu-overexpressing cells to TNF-induced apoptosis and inhibits IkappaB kinases, IkappaB phosphorylation, and NF-kappaB activation. Our results suggested that HER-2/neu constitutively activates the Akt/NF-kappaB anti-apoptotic cascade to confer resistance to TNF on cancer cells and reduce host defenses against neoplasia.
- Published
- 2000
15. Primary structure and function analysis of the Abrus precatorius agglutinin A chain by site-directed mutagenesis. Pro(199) Of amphiphilic alpha-helix H impairs protein synthesis inhibitory activity.
- Author
-
Liu, C L, Tsai, C C, Lin, S C, Wang, L I, Hsu, C I, Hwang, M J, and Lin, J Y
- Abstract
Abrus agglutinin (AAG), a low-toxicity protein from the plant Abrus precatorius, is less lethal than abrina (ABRa) in mice (LD(50) = 5 mg/kg versus 20 microg/kg of body weight). Nucleotide sequence analysis of a cDNA clone encoding full-length AAG showed an open reading frame with 1641 base pairs, corresponding to a 547-amino acid residue preproprotein containing a signal peptide and a linker region (two amino acid residues) between the AAG-A and AAG-B subunits. AAG had high homology to ABRa (77.8%). The 13 amino acid residues involved in catalytic function, which are highly conserved among abrins and ricins, were also conserved within AAG-A. The protein synthesis inhibitory activity of AAG-A (IC(50) = 3.5 nM) was weaker than that of ABRa-A (0.05 nM). Molecular modeling followed by site-directed mutagenesis showed that Pro(199) of AAG-A, located in amphiphilic helix H and corresponding to Asn(200) of ABRa-A, can induce bending of helix H. This bending would presumably affect the binding of AAG-A to its target sequence, GpApGpAp, in the tetraloop structure of the 28 S rRNA subunit and could be one of the major factors contributing to the relatively weak protein synthesis inhibitory activity and toxicity of AAG.
- Published
- 2000
16. Dehydroepiandrosterone and dihydrotestosterone recognition by human estrogenic 17beta-hydroxysteroid dehydrogenase. C-18/c-19 steroid discrimination and enzyme-induced strain.
- Author
-
Han, Q, Campbell, R L, Gangloff, A, Huang, Y W, and Lin, S X
- Abstract
Steroid hormones share a very similar structure, but they behave distinctly. We present structures of human estrogenic 17beta-hydroxysteroid dehydrogenase (17beta-HSD1) complexes with dehydroepiandrosterone (DHEA) and dihydrotestosterone (DHT), providing the first pictures to date of DHEA and DHT bound to a protein. Comparisons of these structures with that of the enzyme complexed with the most potent estrogen, estradiol, revealed the structural basis and general model for sex hormone recognition and discrimination. Although the binding cavity is almost entirely composed of hydrophobic residues that can make only nonspecific interactions, the arrangement of residues is highly complementary to that of the estrogenic substrate. Relatively small changes in the shape of the steroid hormone can significantly affect the binding affinity and specificity. The K(m) of estrone is more than 1000-fold lower than that of DHEA and the K(m) of estradiol is about 10 times lower than that of DHT. The structures suggest that Leu-149 is the primary contributor to the discrimination of C-19 steroids and estrogens by 17beta-HSD1. The critical role of Leu-149 has been well confirmed by site-directed mutagenesis experiments, as the Leu-149 --> Val variant showed a significantly decreased K(m) for C-19 steroids while losing discrimination between estrogens and C-19 steroids. The electron density of DHEA also revealed a distortion of its 17-ketone toward a beta-oriented form, which approaches the transition-state conformation for DHEA reduction.
- Published
- 2000
17. RGS16 attenuates galphaq-dependent p38 mitogen-activated protein kinase activation by platelet-activating factor.
- Author
-
Zhang, Y, Neo, S Y, Han, J, Yaw, L P, and Lin, S C
- Abstract
The large gene family encoding the regulators of G protein signaling (RGS) proteins has been implicated in the fine tuning of a variety of cellular events in response to G protein-coupled receptor activation. Several studies have shown that the RGS proteins can attenuate G protein-activated extracellular signal-regulated kinase (ERK) group of mitogen-activated protein kinases. We demonstrate herein that the production of inositol trisphosphate and the activation of the p38 group of mitogen-activated protein kinases by the G protein-coupled platelet-activating factor (PAF) receptor was attenuated by RGS16 in both CHO cells transiently and stably expressing RGS16. The inhibition was not observed with RGS2, RGS5, and a functionally defective form of RGS16, RGS16(R169S/F170C). The PAF-induced p38 and ERK pathways appeared to be preferentially regulated by RGS16 and RGS1, respectively. Overexpression of a constitutively active form of Galpha11 (Galpha11Q209L) prevented the RGS16-mediated attenuation of p38 activity, suggesting that Galphaq/11 is involved in PAF activation of p38. The Galphaq/11 involvement is further supported by the observation that p38 activation by PAF was pertussis toxin-insensitive. These results demonstrate for the first time that apart from ERK, p38 activation by a G protein-coupled receptor can be attenuated by an RGS protein and provide further evidence for the specificity of RGS function in G protein signaling pathways.
- Published
- 1999
18. Human acyl-CoA:cholesterol acyltransferase-1 is a homotetrameric enzyme in intact cells and in vitro.
- Author
-
Yu, C, Chen, J, Lin, S, Liu, J, Chang, C C, and Chang, T Y
- Abstract
Acyl-CoA:cholesterol acyltransferase (ACAT) is a key enzyme in cellular cholesterol homeostasis and in atherosclerosis. ACAT-1 may function as an allosteric enzyme. We took a multifaceted approach to investigate the subunit composition of ACAT-1. When ACAT-1 with two different tags were co-expressed in the same Chinese hamster ovary cells, antibody specific to one tag caused co-immunoprecipitation of both types of ACAT-1 proteins. Radioimmunoprecipitations of cells expressing the untagged ACAT-1 or the 6-histidine-tagged ACAT-1 yielded a single radiolabeled band of predicted size on SDS-polyacrylamide gel electrophoresis. These results show that ACAT-1 exists as homo-oligomers in intact Chinese hamster ovary cells. We solubilized HisACAT-1 with the detergent deoxycholate or CHAPS (3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonic acid), performed gel filtration chromatography and sucrose density gradient centrifugations in H(2)O and D(2)O, and determined the Stokes radii and sedimentation coefficients of the HisACAT1-detergent complexes. The estimated molecular mass of HisACAT-1 is 263 kDa, which is 4 times that of the HisACAT-1 monomer (69 kDa). Finally, cross-linking experiments in intact cells and in vitro show that the increase in cross-linker concentrations causes an increase in size of the HisACAT-1-positive signals, forming material(s) 4 times the size of the monomer, supporting the conclusion that ACAT-1 is a homotetrameric enzyme.
- Published
- 1999
19. E1A sensitizes cells to tumor necrosis factor-induced apoptosis through inhibition of IkappaB kinases and nuclear factor kappaB activities.
- Author
-
Shao, R, Hu, M C, Zhou, B P, Lin, S Y, Chiao, P J, von Lindern, R H, Spohn, B, and Hung, M C
- Abstract
The adenovirus E1A protein has been implicated in increasing cellular susceptibility to apoptosis induced by tumor necrosis factor (TNF); however, its mechanism of action is still unknown. Since activation of nuclear factor kappaB (NF-kappaB) has been shown to play an anti-apoptotic role in TNF-induced apoptosis, we examined apoptotic susceptibility and NF-kappaB activation induced by TNF in the E1A transfectants and their parental cells. Here, we reported that E1A inhibited activation of NF-kappaB and rendered cells more sensitive to TNF-induced apoptosis. We further showed that this inhibition was through suppression of IkappaB kinase (IKK) activity and IkappaB phosphorylation. Moreover, deletion of the p300 and Rb binding domains of E1A abolished its function in blocking IKK activity and IkappaB phosphorylation, suggesting that these domains are essential for the E1A function in down-regulating IKK activity and NF-kappaB signaling. However, the role of E1A in inhibiting IKK activity might be indirect. Nevertheless, our results suggest that inhibition of IKK activity by E1A is an important mechanism for the E1A-mediated sensitization of TNF-induced apoptosis.
- Published
- 1999
20. The membrane association domain of RGS16 contains unique amphipathic features that are conserved in RGS4 and RGS5.
- Author
-
Chen, C, Seow, K T, Guo, K, Yaw, L P, and Lin, S C
- Abstract
Regulators of G protein signaling (RGS proteins) modulate G protein-mediated signaling pathways by acting as GTPase-activating proteins for Gi, Gq, and G12 alpha-subunits of heterotrimeric G proteins. Although it is known that membrane association is critical for the biological activities of many RGS proteins, the mechanism underlying this requirement remains unclear. We reported recently that the NH2 terminus of RGS16 is required for its function in vivo. In this study, we show that RGS16 lacking the NH2 terminus is no longer localized to the plasma membrane as is the wild type protein, suggesting that membrane association is important for biological function. The region of amino acids 7-32 is sufficient to confer the membrane-targeting activity, of which amino acids 12-30 are predicted to adopt an amphipathic alpha-helix. Site-directed mutagenesis experiments showed that the hydrophobic residues of the nonpolar face of the helix and the strips of positively charged side chains positioned along the polar/nonpolar interface of the helix are crucial for membrane association. Subcellular fractionation by differential centrifugation followed by conditions that distinguish peripheral membrane proteins from integral ones indicate that RGS16 is a peripheral membrane protein. We show further that RGS16 membrane association does not require palmitoylation. Our results, together with other recent findings, have defined a unique membrane association domain with amphipathic features. We believe that these structural features and the mechanism of membrane association of RGS16 are likely to apply to the homologous domains in RGS4 and RGS5.
- Published
- 1999
21. STAT3 activation in stromal/osteoblastic cells is required for induction of the receptor activator of NF-kappaB ligand and stimulation of osteoclastogenesis by gp130-utilizing cytokines or interleukin-1 but not 1,25-dihydroxyvitamin D3 or parathyroid hormone.
- Author
-
O'Brien, C A, Gubrij, I, Lin, S C, Saylors, R L, and Manolagas, S C
- Abstract
Interleukin (IL)-6-type cytokines stimulate osteoclastogenesis by activating gp130 in stromal/osteoblastic cells and may mediate some of the osteoclastogenic effects of other cytokines and hormones. To determine whether STAT3 is a downstream effector of gp130 in the osteoclast support function of stromal/osteoblastic cells and whether the gp130/STAT3 pathway is utilized by other osteoclastogenic agents, we conditionally expressed dominant negative (dn)-STAT3 or dn-gp130 in a stromal/osteoblastic cell line (UAMS-32) that supports osteoclast formation. Expression of either dominant negative protein abolished osteoclast formation stimulated by IL-6 + soluble IL-6 receptor, oncostatin M, or IL-1 but not by parathyroid hormone or 1,25-dihydroxyvitamin D3. Because previous studies suggested that IL-6-type cytokines may stimulate osteoclastogenesis by inducing expression of the tumor necrosis factor-related protein, receptor activator of NF-kappaB ligand (RANKL), we conditionally expressed RANKL in UAMS-32 cells and found that this was sufficient to stimulate osteoclastogenesis. Moreover, dn-STAT3 blocked the ability of either IL-6 + soluble IL-6 receptor or oncostatin M to induce RANKL. These results establish that STAT3 is essential for gp130-mediated osteoclast formation and that the target of STAT3 during this process is induction of RANKL. In addition, this study demonstrates that activation of the gp130-STAT3 pathway in stromal/osteoblastic cells mediates the osteoclastogenic effects of IL-1, but not parathyroid hormone or 1, 25-dihydroxyvitamin D3.
- Published
- 1999
22. Human acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) gene organization and evidence that the 4.3-kilobase ACAT-1 mRNA is produced from two different chromosomes.
- Author
-
Li, B L, Li, X L, Duan, Z J, Lee, O, Lin, S, Ma, Z M, Chang, C C, Yang, X Y, Park, J P, Mohandas, T K, Noll, W, Chan, L, and Chang, T Y
- Abstract
Acyl-CoA:cholesterol acyltransferase (ACAT) plays important roles in cellular cholesterol homeostasis. Four human ACAT-1 mRNAs (7.0, 4.3, 3.6, and 2.8 kilobases (kb)) share the same short 5'-untranslated region (exon 1) and coding sequence (exons 2-15). The 4.3-kb mRNA contains an additional 5'-untranslated region (1289 nucleotides in length; exons Xa and Xb) immediately upstream from the exon 1 sequence. One ACAT-1 genomic DNA insert covers exons 1-16 and a promoter (the P1 promoter). A separate insert covers exon Xa (1277 base pairs) and a different promoter (the P7 promoter). Gene mapping shows that exons 1-16 and the P1 promoter sequences are located in chromosome 1, while exon Xa and the P7 promoter sequence are located in chromosome 7. RNase protection assays demonstrate three different protected fragments, corresponding to the 4.3-kb mRNA and the two other mRNAs transcribed from the two promoters. These results are consistent with the interpretation that the 4.3-kb mRNA is produced from two different chromosomes, by a novel RNA recombination mechanism involving trans-splicing of two discontinuous precursor RNAs.
- Published
- 1999
23. Hydrocarbon rulers in UDP-N-acetylglucosamine acyltransferases.
- Author
-
Wyckoff, T J, Lin, S, Cotter, R J, Dotson, G D, and Raetz, C R
- Abstract
UDP-GlcNAc acyltransferase (LpxA), the first enzyme of lipid A biosynthesis, catalyzes the transfer of an acyl chain activated on acyl carrier protein (ACP) to UDP-GlcNAc. LpxAs are very selective for the lengths of their acyl donor substrates. Escherichia coli LpxA prefers R-3-hydroxymyristoyl-ACP to R-3-hydroxydecanoyl-ACP by a factor of approximately 1000, whereas Pseudomonas aeruginosa LpxA prefers the opposite. E. coli G173M LpxA and the reciprocal P. aeruginosa M169G LpxA show reversed substrate selectivity in vitro and in vivo, demonstrating the existence of precise hydrocarbon rulers in LpxAs.
- Published
- 1998
24. Axin forms a complex with MEKK1 and activates c-Jun NH(2)-terminal kinase/stress-activated protein kinase through domains distinct from Wnt signaling.
- Author
-
Zhang, Y, Neo, S Y, Wang, X, Han, J, and Lin, S C
- Abstract
Axin negatively regulates the Wnt pathway during axis formation and plays a central role in cell growth control and tumorigenesis. We found that Axin also serves as a scaffold protein for mitogen-activated protein kinase activation and further determined the structural requirement for this activation. Overexpression of Axin in 293T cells leads to differential activation of mitogen-activated protein kinases, with robust induction for c-Jun NH(2)-terminal kinase (JNK)/stress-activated protein kinase, moderate induction for p38, and negligible induction for extracellular signal-regulated kinase. Axin forms a complex with MEKK1 through a novel domain that we term MEKK1-interacting domain. MKK4 and MKK7, which act downstream of MEKK1, are also involved in Axin-mediated JNK activation. Domains essential in Wnt signaling, i. e. binding sites for adenomatous polyposis coli, glycogen synthase kinase-3beta, and beta-catenin, are not required for JNK activation, suggesting distinct domain utilization between the Wnt pathway and JNK signal transduction. Dimerization/oligomerization of Axin through its C terminus is required for JNK activation, although MEKK1 is capable of binding C terminus-deleted monomeric Axin. Furthermore, Axin without the MEKK1-interacting domain has a dominant-negative effect on JNK activation by wild-type Axin. Our results suggest that Axin, in addition to its function in the Wnt pathway, may play a dual role in cells through its activation of JNK/stress-activated protein kinase signaling cascade.
- Published
- 1999
25. Human acyl-CoA:cholesterol acyltransferase-1 in the endoplasmic reticulum contains seven transmembrane domains.
- Author
-
Lin, S, Cheng, D, Liu, M S, Chen, J, and Chang, T Y
- Abstract
Acyl-CoA:cholesterol acyltransferase (ACAT) plays important roles in cellular cholesterol homeostasis and is involved in atherosclerosis. ACAT-1 protein is located mainly in the ER. The hydropathy plot suggests that ACAT-1 protein contains multiple transmembrane segments. We inserted either the hemagglutinin tag or the HisT7 tag at various hydrophilic regions within the human ACAT-1 protein and used immunofluorescence microscopy to determine the topography of the tagged proteins expressed in mutant Chinese hamster ovary cells lacking endogenous ACAT. All of the tagged proteins are located mainly in the ER and retain full or partial enzyme activities. None of the tagged proteins produces detectable intracellular degradation intermediates. Treating cells with digitonin at 5 micrograms/ml permeabilizes the plasma membranes while leaving the ER membranes sealed; in contrast, treating cells with 0.25% Triton X-100 or with cold methanol permeabilizes both the plasma membranes and the ER membranes. After appropriate permeabilization, double immunostaining using antibodies against the N-terminal region and against the inserted tag were used to visualize various regions of the tagged protein. The results show that human ACAT-1 in the ER contains seven transmembrane domains.
- Published
- 1999
26. Surfactant protein B (SP-B) -/- mice are rescued by restoration of SP-B expression in alveolar type II cells but not Clara cells.
- Author
-
Lin, S, Na, C L, Akinbi, H T, Apsley, K S, Whitsett, J A, and Weaver, T E
- Abstract
Surfactant protein B (SP-B) mRNA and protein are restricted to alveolar Type II and Clara cells in the respiratory epithelium. In order to investigate the function of SP-B in these distinct cell types, transgenic mice were generated in which SP-B expression was selectively restored in Type II cells or Clara cells of SP-B -/- mice. The 4.8-kilobase murine SP-C promoter was used to generate 3 transgenic lines which expressed human SP-B in Type II cells (mSP-C/hSP-B). Likewise, the 2.3-kilobase murine CCSP promoter was used to generate two transgenic lines which expressed human SP-B in Clara cells (mCCSP/hSP-B). mSP-C/hSP-B and mCCSP/hSP-B transgenic mice were subsequently bred to SP-B +/- mice in order to selectively express SP-B in Type II cells or Clara cells of SP-B -/- mice. Selective restoration of SP-B expression in Type II cells completely rescued the neonatal lethal phenotype in SP-B -/- mice. Expression of SP-B in some, but not all Type II cells of SP-B -/- mice, allowed postnatal survival, but resulted in significantly altered lung architecture and function. Selective restoration of SP-B expression in Clara cells of SP-B -/- mice resulted in respiratory dysfunction and invariable neonatal death, related to the complete absence of mature SP-B peptide in these mice. These results indicate that expression and processing of the SP-B proprotein to the mature peptide in Type II cells is absolutely required for lung function in vivo and that SP-B expression in Clara cells cannot substitute for this function.
- Published
- 1999
27. Lipid A modifications characteristic of Salmonella typhimurium are induced by NH4VO3 in Escherichia coli K12. Detection of 4-amino-4-deoxy-L-arabinose, phosphoethanolamine and palmitate.
- Author
-
Zhou, Z, Lin, S, Cotter, R J, and Raetz, C R
- Abstract
Two-thirds of the lipid A in wild-type Escherichia coli K12 is a hexa-acylated disaccharide of glucosamine in which monophosphate groups are attached at positions 1 and 4'. The remaining lipid A contains a monophosphate substituent at position 4' and a pyrophosphate moiety at position 1. The biosynthesis of the 1-pyrophosphate unit is unknown. Its presence is associated with lipid A translocation to the outer membrane (Zhou, Z., White, K. A., Polissi, A., Georgopoulos, C., and Raetz, C. R. H. (1998) J. Biol. Chem. 273, 12466-12475). To determine if a phosphatase regulates the amount of the lipid A 1-pyrophosphate, we grew cells in broth containing nonspecific phosphatase inhibitors. Na2WO4 and sodium fluoride increased the relative amount of the 1-pyrophosphate slightly. Remarkably, NH4VO3-treated cells generated almost no 1-pyrophosphate, but made six major new lipid A derivatives (EV1 to EV6). Matrix-assisted laser desorption ionization/time of flight mass spectrometry of purified EV1 to EV6 indicated that these compounds were lipid A species substituted singly or in combination with palmitoyl, phosphoethanolamine, and/or aminodeoxypentose residues. The aminodeoxypentose residue was released by incubation in chloroform/methanol (4:1, v/v) at 25 degrees C, and was characterized by 1H NMR spectroscopy. The chemical shifts and vicinal coupling constants of the two anomers of the aminodeoxypentose released from EV3 closely resembled those of synthetic 4-amino-4-deoxy-L-arabinose. NH4VO3-induced lipid A modification did not require the PhoP/PhoQ two-component regulatory system, and also occurred in E. coli msbB or htrB mutants. The lipid A variants that accumulate in NH4VO3-treated E. coli K12 are the same as many of those normally found in untreated Salmonella typhimurium and Salmonella minnesota, demonstrating that E. coli K12 has latent enzyme systems for synthesizing these important derivatives.
- Published
- 1999
28. A Haemophilus influenzae gene that encodes a membrane bound 3-deoxy-D-manno-octulosonic acid (Kdo) kinase. Possible involvement of kdo phosphorylation in bacterial virulence.
- Author
-
White, K A, Lin, S, Cotter, R J, and Raetz, C R
- Abstract
The lipopolysaccharide of Haemophilus influenzae contains a single 3-deoxy-D-manno-octulosonic acid (Kdo) residue derivatized with either a phosphate or an ethanolamine pyrophosphate moiety at the 4-OH position. In previous studies, we identified a kinase unique to H. influenzae extracts that phosphorylates Kdo-lipid IV(A), a key precursor of lipopolysaccharide in this organism. We have now identified the gene encoding the Kdo kinase by using an expression cloning approach. A cosmid library containing random DNA fragments from H. influenzae strain Rd was constructed in Escherichia coli. Extracts of 472 colonies containing individual hybrid cosmids were assayed for Kdo kinase activity. A single hybrid cosmid directing expression of the kinase was found. The kinase gene was identified by activity assays, sub-cloning, and DNA sequencing. When the putative kinase gene was expressed in E. coli behind a T7 promoter, massive overproduction of kinase activity was achieved ( approximately 8000-fold higher than in H. influenzae membranes). The catalytic properties and the product generated by the overexpressed kinase, assayed with Kdo-lipid IV(A) as the substrate, were the same as observed with H. influenzae membranes. Unexpectedly, the kinase gene was identical to a previously characterized open reading frame (orfZ), which had been shown to be important for establishing bacteremia in an infant rat model (Hood, D. W., Deadman, M. E., Allen, T., Masoud, H., Martin, A., Brisson, J. R., Fleischmann, R., Venter, J. C., Richards, J. C., and Moxon, E. R. (1996) Mol. Microbiol. 22, 951-965). However, based solely on the genome sequence of H. influenzae Rd, no biochemical function had been assigned to the product of orfZ, which we now designate kdkA ("Kdo kinase A"). Although Kdo phosphorylation may be critical for bacterial virulence of H. influenzae, it does not appear to be required for growth.
- Published
- 1999
29. Growth/cell cycle regulation of Sp1 phosphorylation.
- Author
-
Black, A R, Jensen, D, Lin, S Y, and Azizkhan, J C
- Abstract
Sp1 sites can mediate growth/cell cycle induction of dihydrofolate reductase in late G1 (Jensen, D. E., Black, A. R. Swick, A. G., and Azizkhan, J. C. (1997) J. Cell. Biochem. 67, 24-31). To investigate mechanisms underlying this induction, effects of serum stimulation on regulation of Sp1 were examined. In Balb/c 3T3 cells, serum stimulation did not affect Sp1 synthesis or the relative binding of Sp1 family members to DNA; however, it did result in a rapid, approximately 2-fold increase in Sp1 levels and an approximately 3-fold increase in specific Sp1 phosphorylation in mid-G1. In normal human diploid fibroblasts, serum stimulation also increased Sp1 phosphorylation in mid-G1 but did not affect Sp1 levels. Therefore, Sp1 phosphorylation is regulated in a growth/cell cycle-dependent manner which correlates temporally with induction of dihydrofolate reductase transcription. Further studies revealed a kinase activity specifically associated with Sp1 in a growth-regulated manner. This activity is distinct from purified kinases previously shown to phosphorylate Sp1 in vitro and phosphorylates Sp1 between amino acids 612 and 678 in its C terminus, a region also phosphorylated in mid-G1 in vivo. Therefore, this study indicates that phosphorylation of the C terminus of Sp1 may play a role in the cell cycle regulation of its transcriptional activity.
- Published
- 1999
30. A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering.
- Author
-
Culotta, V C, Joh, H D, Lin, S J, Slekar, K H, and Strain, J
- Abstract
The copper toxicity of yeast lacking the CUP1 metallothionein is suppressed by overexpression of the CRS4 gene. We now demonstrate that CRS4 is equivalent to SOD1, encoding copper/zinc superoxide dismutase (SOD). While overexpression of SOD1 enhanced copper resistance, a deletion of SOD1, but not SOD2 (encoding manganese SOD), conferred an increased sensitivity toward copper. This role of SOD1 in copper buffering appears unrelated to its superoxide scavenging activity, since the enzyme protected against copper toxicity in anaerobic as well as aerobic conditions. The distinct roles of SOD1 in copper and oxygen radical homeostasis could also be separated genetically: the pmr1, bsd2, and ATX1 genes that suppress oxygen toxicity in sod1 mutants failed to suppress the copper sensitivity of these cells. The Saccharomyces cerevisiae SOD1 gene is transcriptionally induced by copper and the ACE1 transactivator, and we demonstrate here that this induction of SOD1 promotes protection against copper toxicity but is not needed for the SOD1-protection against oxygen free radicals. Collectively, these findings indicate that copper/zinc SOD functions in the homeostasis of copper via mechanisms distinct from superoxide scavenging.
- Published
- 1995
31. Isolation and characterization of PAGE-1 and GAGE-7. New genes expressed in the LNCaP prostate cancer progression model that share homology with melanoma-associated antigens.
- Author
-
Chen, M E, Lin, S H, Chung, L W, and Sikes, R A
- Abstract
The LNCaP progression model of human prostate cancer consists of lineage-related sublines that differ in their androgen sensitivity and metastatic potential. A differential display polymerase chain reaction was employed to evaluate mRNA expression differences between the LNCaP sublines in order to define the differences in gene expression between the androgen-sensitive, nontumorigenic LNCaP cell line and the androgen-insensitive, metastatic LNCaP sublines, C4-2 and C4-2B. An amplicon, BG16.21, was isolated that showed increased expression in the androgen-independent and metastatic LNCaP sublines, C4-2 and C4-2B. Hybridization screening of a lambda gt11 expression library with BG16.21 revealed two transcripts, both homologous to BG16.21 at the 3' end. A GenBankTM data base search using the GCG Wisconsin software package revealed the shorter approximately 600-bp transcript (designated GAGE-7) to be a new member of the GAGE family. The second approximately 700-bp transcript was a novel gene (designated PAGE-1, "prostate associated gene") with only 45% homology to GAGE gene family members. RNA blot analysis demonstrated that GAGE-7 mRNA was expressed at equal levels in all lineage related prostate cancer cell sublines, while PAGE-1 mRNA levels were elevated 5-fold in C4-2 and C4-2B as compared with LNCaP cells. Neither GAGE-7 nor PAGE-1 demonstrated any regulation by androgens in the prostate cancer cell lines used in this study. PAGE-1 and GAGE-7 expression was found to be restricted to testes (high) and placenta (low) on human multiple tissue Northern blots. As GAGE/MAGE antigens were reported previously to be targets for tumor-specific cytotoxic lymphocytes in melanoma, these results suggest that PAGE-1 and GAGE-7 may be related to prostate cancer progression and may serve as potential targets for novel therapies.
- Published
- 1998
32. Enhancement of serum-response factor-dependent transcription and DNA binding by the architectural transcription factor HMG-I(Y).
- Author
-
Chin, M T, Pellacani, A, Wang, H, Lin, S S, Jain, M K, Perrella, M A, and Lee, M E
- Abstract
The mechanisms by which HMG-I proteins regulate cell growth are unknown, and their effects on gene expression have only been partially elucidated. We explored the potential interaction between HMG-I proteins and serum-response factor (SRF), a member of the MADS-box family of transcription factors. In cotransfection experiments, HMG-I(Y) potentiated SRF-dependent activation (by more than 5-fold) of two distinct SRF-responsive promoters, c-fos and the smooth muscle-specific gene SM22alpha. This effect was also observed with a heterologous promoter containing multiple copies of the CC(A/T)6GG (CArG) box. HMG-I proteins bound specifically to the CArG boxes of c-fos and SM22alpha in gel mobility shift analysis and enhanced binding of SRF to these CArG boxes. By chelating peptide-immobilized metal affinity chromatography, we mapped the domain of HMG-I(Y) that interacts with SRF to amino acids 50-81, a region that does not bind specifically to DNA in electrophoretic mobility shift assays even though it includes the third AT-hook DNA-binding domain. Surprisingly, HMG-I(Y) mutants that failed to bind DNA still enhanced SRF binding to DNA and SRF-dependent transcription. In contrast, deletion of the HMG-I(Y) 50-81 domain that bound SRF prevented enhancement of transcription. To our knowledge, this is the first report of an HMG-I protein interacting with a MADS-box transcription factor. Our observations suggest that members of the HMG-I family play an important role in SRF-dependent transcription and that their effect is mediated primarily by a protein-protein interaction.
- Published
- 1998
33. Tyrosine-dependent basolateral sorting signals are distinct from tyrosine-dependent internalization signals.
- Author
-
Lin, S, Naim, H Y, and Roth, M G
- Abstract
Converting cysteine 543 to tyrosine in the influenza virus hemagglutinin (HA) introduces both a basolateral sorting signal and an internalization signal into the HA cytoplasmic domain. Another HA mutant, HA+8, contains eight additional amino acids at the end of the cytoplasmic domain that include a powerful internalization signal. HA+8 was also sorted efficiently to the basolateral surface of Madin-Darby canine kidney cells. The simplest explanation for the observation that multiple sorting phenotypes depend upon the same small amino acid sequence is that certain tyrosine-based internalization signals might also function as basolateral sorting signals. To test this hypothesis, second-site mutations were introduced into HA C543Y or HA+8 to determine if the internalization and basolateral sorting functions can be separated. For HA C543Y, the same sequence positions were important for both basolateral sorting and internalization, but the two functions responded differently to individual amino acid replacements, indicating that they were distinct. For HA+8, the basolateral sorting signal required the same tyrosine as the internalization signal, but did not share any other characteristics. Thus, even when basolateral sorting signals that depend on tyrosine overlap or are co-linear with internalizations signals, the two sorting processes are sensitive to different characteristics of the sequence.
- Published
- 1997
34. Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis.
- Author
-
Klomp, L W, Lin, S J, Yuan, D S, Klausner, R D, Culotta, V C, and Gitlin, J D
- Abstract
To search for a mammalian homologue of ATX1, a human liver cDNA library was screened and a cDNA clone was isolated, which encodes a protein with 47% amino acid identity to Atx1p including conservation of the MTCXGC copper-binding domain. RNA blot analysis using this cDNA identified an abundant 0.5-kilobase mRNA in all human tissues and cell lines examined. Southern blot analysis using this same clone indicated that the corresponding gene exists as a single copy in the haploid genome, and chromosomal localization by fluorescence in situ hybridization detected this locus at the interface between bands 5q32 and 5q33. Yeast strains lacking copper/zinc superoxide dismutase (SOD1) are sensitive to redox cycling agents and dioxygen and are auxotrophic for lysine when grown in air, and expression of this human ATX1 homologue (HAH1) in these strains restored growth on lysine-deficient media. Yeast strains lacking ATX1 are deficient in high affinity iron uptake and expression of HAH1 in these strains permits growth on iron-depleted media and results in restoration of copper incorporation into newly synthesized Fet3p. These results identify HAH1 as a novel ubiquitously expressed protein, which may play an essential role in antioxidant defense and copper homeostasis in humans.
- Published
- 1997
35. A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport.
- Author
-
Lin, S J, Pufahl, R A, Dancis, A, O'Halloran, T V, and Culotta, V C
- Abstract
The ATX1 gene of Saccharomyces cerevisiae was originally identified as a multi-copy suppressor of oxidative damage in yeast lacking superoxide dismutase. We now provide evidence that Atx1p helps deliver copper to the copper requiring oxidase Fet3p involved in iron uptake. atx1Delta null mutants are iron-deficient and are defective in the high affinity uptake of iron. These defects due to ATX1 inactivation are rescued by copper treatment, and the same has been reported for strains lacking either the cell surface copper transporter, Ctr1p, or the putative copper transporter in the secretory pathway, Ccc2p. Atx1p localizes to the cytosol, and our studies indicate that it functions as a carrier for copper that delivers the metal from the cell surface Ctr1p to Ccc2p and then to Fet3p within the secretory pathway. The iron deficiency of atx1 mutants is augmented by mutations in END3 blocking endocytosis, suggesting that a parallel pathway for intracellular copper trafficking is mediated by endocytosis. As additional evidence for the role of Atx1p in iron metabolism, we find that the gene is induced by the same iron-sensing trans-activator, Aft1p, that regulates CCC2 and FET3.
- Published
- 1997
36. Characterization of a novel mammalian RGS protein that binds to Galpha proteins and inhibits pheromone signaling in yeast.
- Author
-
Chen, C, Zheng, B, Han, J, and Lin, S C
- Abstract
Genetic studies of molecules that negatively regulate G-coupled receptor functions have led to the identification of a large gene family with an evolutionarily conserved domain, termed the RGS domain. It is now understood that RGS proteins serve as GTPase-activating proteins for subfamilies of the heterotrimeric G-proteins. We have isolated from mouse pituitary a full-length cDNA clone encoding a novel member of the RGS protein family, termed RGS16, as well as the full-length cDNA of mRGS5 and mRGS2. Tissue distribution analysis shows that the novel RGS16 is predominantly expressed in liver and pituitary, and that RGS5 is preferentially expressed in heart and skeletal muscle. In contrast, RGS2 is widely expressed. Genetic analysis using the pheromone response halo assay and FUS1 gene induction assay show that overexpression of the RGS16 gene dramatically inhibits yeast response to alpha-factor, whereas neither RGS2 nor RGS5 has any discernible effect on pheromone sensitivity, pointing to a possible functional diversity among RGS proteins. In vitro binding assays reveal that RGS5 and RGS16 bind to Galphai and Galphao subunits of heterotrimeric G-proteins, but not to Galphas. Based on mutational analysis of the conserved residues in the RGS domain, we suggest that the G-protein binding and GTPase-activating protein activity may involve distinct functional structures of the RGS proteins, indicating that RGS proteins may exert a dual function in the attenuation of signaling via G-coupled receptors.
- Published
- 1997
37. Two Ca2+-dependent ATPases in rat liver plasma membrane. The previously purified (Ca2+-Mg2+)-ATPase is not a Ca2+-pump but an ecto-ATPase.
- Author
-
Lin, S H and Russell, W E
- Abstract
We have shown that the rat liver plasma membrane has at least two (Ca2+-Mg2+)-ATPases. One of them has the properties of a plasma membrane Ca2+-pump (Lin, S.-H. (1985) J. Biol. Chem. 260, 7850-7856); the other one, which we have purified (Lin, S.-H., and Fain, J.N. (1984) J. Biol. Chem. 259, 3016-3020) and characterized (Lin, S.-H. (1985) J. Biol. Chem. 260, 10976-10980) has no established function. In this study we present evidence that the purified (Ca2+-Mg2+)-ATPase is a plasma membrane ecto-ATPase. In hepatocytes in primary culture, we can detect Ca2+-ATPase and Mg2+-ATPase activities by addition of ATP to the intact cells. The external localization of the active site of the ATPase was confirmed by the observation that the Ca2+-ATPase and Mg2+-ATPase activities were the same for intact cells, saponin-treated cells, and cell homogenates. Less than 14% of total intracellular lactate dehydrogenase, a cytosolic enzyme, was released during a 30-min incubation of the hepatocytes with 2 mM ATP. This indicates that the hepatocytes maintained cytoplasmic membrane integrity during the 30-min incubation with ATP, and the Ca2+-ATPase and Mg2+-ATPase activity measured in the intact cell preparation was due to cell surface ATPase activity. The possibility that the ecto-Ca2+-ATPase and Mg2+-ATPase may be the same protein as the previously purified (Ca2+-Mg2+)-ATPase was tested by comparing the properties of the ecto-ATPase with those of (Ca2+-Mg2+)-ATPase. Both the ecto-ATPase and the (Ca2+-Mg2+)-ATPase have broad nucleotide-hydrolyzing activity, i.e. they both hydrolyze ATP, GTP, UTP, CTP, ADP, and GDP to a similar extent. The effect of Ca2+ and Mg2+ on the ecto-ATPase activity is not additive indicating that both Ca2+- and Mg2+-ATPase activities are part of the same enzyme. The ecto-ATPase activity, like the (Ca2+-Mg2+)-ATPase, is not sensitive to oligomycin, vanadate, N-ethylmaleimide and p-chloromercuribenzoate; and both the ecto-ATPase and purified (Ca2+-Mg2+)-ATPase activities are insensitive to protease treatments. These properties indicate that the previously purified (Ca2+-Mg2+)-ATPase is an ecto-ATPase and may function in regulating the effect of ATP and ADP on hepatocyte Ca2+ mobilization (Charest, R., Blackmore, P.F., and Exton, J.H. (1985) J. Biol. Chem. 260, 15789-15794).
- Published
- 1988
- Full Text
- View/download PDF
38. Identification of free deaminated sialic acid (2-keto-3-deoxy-D-glycero-D-galacto-nononic acid) in human red blood cells and its elevated expression in fetal cord red blood cells and ovarian cancer cells.
- Author
-
Inoue, S, Lin, S L, Chang, T, Wu, S H, Yao, C W, Chu, T Y, Troy, F A, and Inoue, Y
- Abstract
Chemical studies have shown the occurrence of the deaminated sialic acid 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN) in paired samples of blood obtained from mothers and newborns of healthy human individuals. Most of the KDN was found in red blood cells, although low levels were detected in mononuclear cells. No N-glycolylneuraminic acid was detected. Unexpectedly, nearly all of the KDN in fetal cord and matched maternal red blood cells was present as the free sugar and comparatively little occurred conjugated or as cytidine 5'-KDN phosphate. The amount of free KDN in fetal newborn red blood cells was 2.4-fold higher than in red blood cells from the mothers or from healthy nonpregnant women. Free KDN was also identified in normal human ovaries, in ovarian tumors, and in ascites cells obtained from ovarian cancer patients. Importantly, as in fetal cord red blood cells, a distinguishing feature of KDN expression in ovarian tumor cells was an elevated level of free KDN compared with normal controls. A positive correlation was found between an increase in the ratio of free KDN/N-acetylneuraminic acid in ovarian adenocarcinomas and the stage of malignancy. This was particularly evident in tumor cells isolated from the ascites fluid. The central importance of these new findings is 2-fold. First, they show that free KDN is a minor but ubiquitous sialic acid in human red blood cells and that its elevated expression in red blood cells from fetal cord blood compared with maternal red blood cells may be developmentally related to blood cell formation during embryogenesis. Second, the enhanced expression of KDN in ovarian cancer cells suggests that this sialic acid, like the alpha2,8-linked polysialic acid glycotope, may be an oncofetal antigen in these tumors and thus could be an "early warning" signal for onset of disease and/or a marker for detection of recurrence of disease. These new findings highlight the importance of elucidating the role that KDN and KDN-containing glycoconjugates may play in normal development and malignancy.
- Published
- 1998
39. Protein kinase C eta mediates lipopolysaccharide-induced nitric-oxide synthase expression in primary astrocytes.
- Author
-
Chen, C C, Wang, J K, Chen, W C, and Lin, S B
- Abstract
The signaling pathway involved in protein kinase C (PKC) activation and role of PKC isoforms in lipopolysaccharide (LPS)-induced nitric oxide (NO) release were studied in primary cerebellar astrocytes. LPS caused a dose- and time-dependent increase in NO release and inducible NO synthase (iNOS) expression. The tyrosine kinase inhibitor, genestein, the phosphatidylcholine-phospholipase C inhibitor, D609, and the phosphatidate phosphodrolase inhibitor, propranolol, attenuated the LPS effects, whereas the PI-PLC inhibitor, U73122, had no effect. The PKC inhibitors (staurosporine, Ro 31-8220, Go 6976, and calphostin C) also inhibited LPS-induced NO release and iNOS expression. However, long term (24 h) pretreatment of cells with 12-O-tetradecanoyl phorbol-13-acetate (TPA) did not affect the LPS response. Previous results have shown that TPA-induced translocation, but not down-regulation, of PKCeta occurs in astrocytes (Chen, C. C., and Chen, W. C. (1996) Glia 17, 63-71), suggesting possible involvement of PKCeta in LPS-mediated effects. Treatment with antisense oligonucleotides for PKCeta or delta, another isoform abundantly expressed in astrocytes, demonstrated the involvement of PKCeta, but not delta, in LPS-mediated effects. Stimulation of cells for 1 h with LPS caused activation of nuclear factor (NF)-kB in the nuclei as detected by the formation of a NF-kB-specific DNA-protein complex; this effect was inhibited by genestein, D609, propranolol, or Ro 31-8220 or by PKCeta antisense oligonucleotides, but not by long term TPA treatment. These data suggest that in astrocytes, LPS might activate phosphatidylcholine-phospholipase C and phosphatidylcholine-phospholipase D through an upstream protein tyrosine kinase to induce PKC activation. Of the PKC isoforms present in these cells, only activation of PKCeta by LPS resulted in the stimulation of NF-kB-specific DNA-protein binding and then initiated the iNOS expression and NO release. This is further evidence demonstrating that different members of the PKC family within a single cell are involved in specific physiological responses.
- Published
- 1998
40. Functional interaction of transmembrane helices 3 and 6 in rhodopsin. Replacement of phenylalanine 261 by alanine causes reversion of phenotype of a glycine 121 replacement mutant.
- Author
-
Han, M, Lin, S W, Minkova, M, Smith, S O, and Sakmar, T P
- Abstract
Replacement of a highly conserved glycine residue on transmembrane (TM) helix 3 of bovine rhodopsin (Gly121) by amino acid residues with larger side chains causes a progressive blue-shift in the lambdamax value of the pigment, a decrease in thermal stability, and an increase in reactivity with hydroxylamine. In addition, mutation of Gly121 causes a relative reversal in the selectivity of opsin for 11-cis-retinal over all-trans-retinal. It was suggested that Gly121 plays an important role in defining the 11-cis-retinal binding pocket of rhodopsin (Han, M., Lin, S. W., Smith, S. O., and Sakmar, T. P. (1996) J. Biol. Chem. 271, 32330-32336). Here, we combined the mutant opsin G121L with second site replacements of four different amino acid residues on TM helix 6: Met257, Val258, Phe261, or Trp265. We show that the loss of function phenotypes of the G121L mutant described above can be partially reverted specifically by the mutation of Phe261, a residue highly conserved in all G protein-coupled receptors. For example, the double-replacement mutant G121L/F261A has spectral, chromophore-binding, and transducin-activating properties intermediate between those of G121L and rhodopsin. This rescue of the G121L defects did not occur with the other second site mutations tested. We conclude that specific portions of TM helices 3 and 6, which include Gly121 and Phe261, respectively, define the chromophore-binding pocket in rhodopsin. Finally, the results are placed in the context of a molecular graphics model of the TM domain of rhodopsin, which includes the retinal-binding pocket.
- Published
- 1996
41. The effects of amino acid replacements of glycine 121 on transmembrane helix 3 of rhodopsin.
- Author
-
Han, M, Lin, S W, Smith, S O, and Sakmar, T P
- Abstract
Rhodopsin is a member of a family of G protein-coupled receptors with seven transmembrane (TM) helices. In rhodopsin, Gly121 is a highly conserved amino acid residue near the middle of TM helix 3. TM helix 3 is known to be involved in chromophore-protein interactions and contains the chromophore Schiff base counterion at position 113. We prepared a set of seven single amino acid replacement mutants of rhodopsin at position 121 (G121A, Ser, Thr, Val, Ile, Leu, and Trp) and control mutants with replacements of Gly114 or Ala117. The mutant opsins were expressed in COS cells and reconstituted with either 11-cis-retinal, the ground-state chromophore of rhodopsin, or all-trans-retinal, the isomer formed upon receptor photoactivation. The replacement of Gly121 resulted in a relative reversal in the selectivity of the opsin apoprotein for reconstitution with 11-cis-retinal over all-trans-retinal in COS cell membranes. The mutant pigments also were found to be thermally unstable to varying degrees and reactive to hydroxylamine in the dark. In addition, the size of the residue substituted at position 121 correlated directly to the degree of blue-shift in the lambdamax value of the pigment. These results suggest that Gly121 is an important and specific component of the 11-cis-retinal binding pocket in rhodopsin.
- Published
- 1996
42. Fluorescent labeling of purified beta 2 adrenergic receptor. Evidence for ligand-specific conformational changes.
- Author
-
Gether, U, Lin, S, and Kobilka, B K
- Abstract
The purpose of the present study was to develop an approach to directly monitor structural changes in a G protein-coupled receptor in response to drug binding. Purified human beta 2 adrenergic receptor was covalently labeled with the cysteine-reactive, fluorescent probe N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4- yl)ethylenediamine (IANBD). IANBD is characterized by a fluorescence which is highly sensitive to the polarity of its environment. We found that the full agonist, isoproterenol, elicited a stereoselective and dose-dependent decrease in fluorescence from IANBD-labeled beta 2 receptor. The change in fluorescence could be plotted against the concentration of isoproterenol as a simple hyperbolic binding isotherm demonstrating interaction with a single binding site in the receptor. The ability of several adrenergic antagonists to reverse the response confirmed that this binding site is identical to the well described binding site in the beta 2 receptor. Comparison of the response to isoproterenol with a series of adrenergic agonists, having different biological efficacies, revealed a linear correlation between biological efficacy and the change in fluorescence. This suggests that the agonist-mediated decrease in fluorescence from IANBD-labeled beta 2 receptor is due to the same conformational change as involved in receptor activation and G protein coupling. In contrast to agonists, negative antagonists induced a small but significant increase in base-line fluorescence. Despite the small amplitude of this response, it supports the notion that antagonists by themselves may alter receptor structure. In conclusion, our data provide the first direct evidence for ligand-specific conformational changes occurring in a G protein-coupled receptor. Furthermore, the data demonstrate the potential of fluorescence spectroscopy as a tool for further delineating the molecular mechanisms of drug action at G protein-coupled receptors.
- Published
- 1995
43. Purification of (Ca2+-Mg2+)-ATPase from rat liver plasma membranes.
- Author
-
Lin, S H and Fain, J N
- Abstract
The Ca2+-stimulated, Mg2+-dependent ATPase from rat liver plasma membranes was solubilized using the detergent polyoxyethylene 9 lauryl ether and purified by column chromatography using Polybuffer Exchanger 94, concanavalin A-Sepharose 4B, and Sephadex G-200. The molecular weight of the enzyme, estimated by gel filtration in the presence of the detergent on a Sephadex G-200 column, was 200,000 +/- 15,000. The enzyme was purified at least 300-fold from rat liver plasma membranes and had a specific activity of 19.7 mumol/mg/min. Polyacrylamide gel electrophoresis under nondenaturing conditions of the purified enzyme indicated that the enzymatic activity correlated with the major protein band. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, one major band in the molecular weight range of 70,000 +/- 5,000 was seen. The isoelectric point of the purified enzyme was 6.9 +/- 0.2 as determined by analytical isoelectric focusing. The enzyme was activated by Ca2+ with an apparent half-saturation constant of 87 +/- 2 nM for Ca2+. Calmodulin and trifluoperazine at the concentration of 1 microgram/ml and 100 microM, respectively, had no effect on the enzymatic activity.
- Published
- 1984
- Full Text
- View/download PDF
44. Apolipoprotein(a) yeast artificial chromosome transgenic rabbits. Lipoprotein(a) assembly with human and rabbit apolipoprotein B.
- Author
-
Rouy, D, Duverger, N, Lin, S D, Emmanuel, F, Houdebine, L M, Denefle, P, Viglietta, C, Gong, E, Rubin, E M, and Hughes, S D
- Abstract
The in vivo analysis of lipoprotein(a) (Lp(a)), an independent atherosclerosis risk factor in humans, has been limited in part by its restricted distribution among mammals. Although transgenic mice have been created containing Lp(a), the relatively small size of the mouse has precluded some studies. To examine the properties of this molecule in a significantly larger mammal, we have used a 270-kilobase yeast artificial chromosome clone containing the human apolipoprotein(a) (apo(a)) gene and a 90-kilobase P1 phagemid clone containing the human apolipoprotein B (apoB) gene to create transgenic rabbits that express either or both transgenes. Expression of both transgenes was tissue specific and localized predominantly to the liver. Average apolipoprotein plasma levels in the rabbits were 2.5 mg/dl for apo(a) and 17.6 mg/dl for human apoB. In contrast to observations in apo(a) transgenic mice, we found that apo(a) plasma levels in the rabbits were stable throughout sexual maturity. Also, apo(a) formed a covalent association with the endogenous rabbit apoB albeit with a lower efficiency than its association with human apoB. The analysis of Lp(a) transgenic rabbits has provided new insights into apo(a) expression and Lp(a) assembly. In addition, these transgenic rabbits potentially will provide an improved experimental model for the in vivo analysis of Lp(a) and its role in promoting atherosclerosis and restenosis.
- Published
- 1998
45. Photoaffinity labeling by 4-thiodideoxyuridine triphosphate of the HIV-1 reverse transcriptase active site during synthesis. Sequence of the unique labeled hexapeptide.
- Author
-
Lin, S, Henzel, W J, Nayak, S, and Dennis, D
- Abstract
The active site of HIV-1 reverse transcriptase (HIV-1 RT) was investigated by photoaffinity labeling based on catalytic competence. A stable ternary elongation complex was assembled containing enzyme, DNA template (RT20), DNA primer molecule (P12), and the necessary dNTPs (one of which was alpha-32P-labeled) needed for primer elongation. The photoaffinity probe 4-thiodideoxyuridine triphosphate was incorporated uniquely at the 3' terminus of the 32P-labeled DNA product. Upon photolysis, the p66 subunit of a HIV-1 RT heterodimer (p66/p51) was uniquely cross-linked to the DNA product and subsequently digested by either trypsin or endoproteinase Lys-C. The labeled HIV-1 RT peptide was separated, purified, and finally subjected to Edman microsequencing. A unique radioactive hexapeptide (V276RQLCK281) was identified and sequenced. Our photoaffinity labeling results were positioned on the HIV-1 RT. DNA.Fab complex x-ray crystallography structure and compared with the suggested aspartic triad active site.
- Published
- 1998
46. High affinity cytochalasin B binding to red cell membrane proteins which are unrelated to sugar transport.
- Author
-
Lin, S and Snyder, C E
- Published
- 1977
- Full Text
- View/download PDF
47. Rapid changes in hepatocyte phosphoinositides induced by vasopressin.
- Author
-
Litosch, I, Lin, S H, and Fain, J N
- Abstract
Vasopressin stimulated a 40% decrease in [32P]phosphatidylinositol 4,5-bisphosphate and a 15% decrease in [32P]phosphatidylinositol within 30 s of addition to hepatocytes prelabeled for 60 min with 32P. In hepatocytes prelabeled with [3H]inositol for 60 min, vasopressin produced 20% breakdown of phosphatidylinositol and 33% breakdown of phosphatidylinositol 4,5-bisphosphate within 30 s. There was a 40% increase in total phosphatidylinositol 4,5-bisphosphate within 30 s of vasopressin addition. Breakdown of phosphatidylinositol accounted for disappearance of 95% of the inositol lipid label. In hepatocytes from rats labeled in vivo with [3H]inositol, vasopressin stimulated 10% loss of labeled phosphatidylinositol. Loss of [32P]phosphatidylinositol due to vasopressin was followed by reincorporation of label to levels greater than control while 32P reuptake into phosphatidylinositol 4,5-bisphosphate did not exceed control values. With in vitro [3H]inositol-labeled hepatocytes, loss of label from the phosphoinositides was followed by reuptake of tritium label to control levels. In hepatocytes labeled in vivo with [3H]inositol, reuptake of [3H]inositol label did not occur. These data indicate that the hormone-sensitive pool of hepatocyte phosphoinositides can be labeled by both in vitro and in vivo procedures. Vasopressin induces a rapid decrease of labeled phosphatidylinositol and phosphatidylinositol 4,5-bisphosphate within 30 s.
- Published
- 1983
- Full Text
- View/download PDF
48. Novel ATP-dependent calcium transport component from rat liver plasma membranes. The transporter and the previously reported (Ca2+-Mg2+)-ATPase are different proteins.
- Author
-
Lin, S H
- Abstract
An ATP-dependent calcium transport component from rat liver plasma membranes was solubilized by cholate and reconstituted into egg lecithin vesicles by a cholate dialysis procedure. The uptake of Ca2+ into the reconstituted vesicles was ATP-dependent and the trapped Ca2+ could be released by A23187. Nucleotides, including ADP, UTP, GTP, CTP, GDP, AMP, and adenyl-5'-yl beta, gamma-imidophosphate, and p-nitrophenylphosphate did not substitute for ATP. The concentration of ATP required for half-maximal stimulation of Ca2+ uptake into the reconstituted vesicles was 6.2 microM. Magnesium was required for calcium uptake. Inhibitors of mitochondrial calcium-sequestering activities, i.e. oligomycin, sodium azide, ruthenium red, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, and valinomycin did not affect the uptake of Ca2+ into the vesicles. In addition, strophanthidin and p-chloromercuribenzoate did not affect the transport. Calcium transport, however, was inhibited by vanadate in a concentration-dependent fashion with a K0.5 of 10 microM. A calcium-stimulated, vanadate-inhibitable phosphoprotein was demonstrated in the reconstituted vesicles with an apparent molecular weight of 118,000 +/- 1,300. These properties of Ca2+ transport by vesicles reconstituted from liver plasma membranes suggest that this ATP-dependent Ca2+ transport component is different from the high affinity (Ca2+-Mg2+)-ATPase found in the same membrane preparation (Lotersztajn, S., Hanoune, J. and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215; Lin, S.-H., and Fain, J.N. (1984) J. Biol. Chem. 259, 3016-3020). When the entire reconstituted vesicle population was treated with ATP and 45Ca in a buffer containing oxalate, the vesicles with Ca2+ transport activity could be separated from other vesicles by centrifugation in a density gradient and the ATP-dependent Ca2+ transport component was purified approximately 9-fold. This indicates that transport-specific fractionation may be used to isolate the ATP-dependent Ca2+ transport component from liver plasma membrane.
- Published
- 1985
- Full Text
- View/download PDF
49. A platelet membrane protein expressed during platelet activation and secretion. Studies using a monoclonal antibody specific for thrombin-activated platelets.
- Author
-
Hsu-Lin, S, Berman, C L, Furie, B C, August, D, and Furie, B
- Abstract
To identify structures on the platelet surface which become expressed after platelet activation, we have prepared murine monoclonal antibodies specific for thrombin-activated platelets. Hybridomas were screened for clones producing antibodies which bound to thrombin-activated platelets but not to resting platelets. Clone KC4 was identified. The binding of purified I-labeled KC4 antibody, an IgG1k, to thrombin-activated platelets was saturable. Minimal binding was observed to resting platelets. The interaction of antibody with thrombin-activated platelets was characterized by a binding constant, KD, of 7.2 +/- 0.4 nM and revealed 13,400 +/- 3,000 binding sites per platelet. The presence of Ca2+ or EDTA, a pH ranging from 4 to 10, or high ionic strength had no influence on antigen-antibody interaction. The KC4 antigen was expressed on the platelet surface after activation with ADP, collagen, epinephrine, or thrombin. The extent of [14C] serotonin release during activation was directly proportional to the availability of antigen on the platelet surface regardless of agonist or platelet aggregation. The antibody is directed against a single protein which migrated between GPIIb and GPIIa after sodium dodecyl sulfate gel electrophoresis. This protein was purified from platelet membranes by immunoaffinity chromatography using KC4 antibody-agarose and demonstrated an apparent molecular weight of 140,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis under both nonreducing and reducing conditions. Of the cells examined, only platelets contained this protein. These results indicate that platelet secretion is associated with the expression of an Mr = 140,000 integral membrane protein composed of a single polypeptide chain. This protein may be component of the internal granule membrane which is fused with the plasma membrane during activation.
- Published
- 1984
- Full Text
- View/download PDF
50. Protein kinase C inhibits adenylyl cyclase type VI activity during desensitization of the A2a-adenosine receptor-mediated cAMP response.
- Author
-
Lai, H L, Yang, T H, Messing, R O, Ching, Y H, Lin, S C, and Chern, Y
- Abstract
We have previously reported that phosphorylation of adenylyl cyclase type VI (AC6) may result in the suppression of adenylyl cyclase activity during desensitization of the A2a-adenosine receptor-mediated cAMP response (A2a desensitization) in rat pheochromocytoma PC12 cells. In the present study, we demonstrate that protein kinase C (PKC) is responsible for the phosphorylation and inhibition of AC6 during A2a desensitization. Inhibition of PKC by several independent methods markedly blocked the suppression of AC6 during A2a desensitization. Purified PKC from rat brain directly phosphorylated and inhibited recombinant AC6 expressed in Sf21 cells. Substantially lower AC6 activities were also observed in PC12 cells overexpressing PKCdelta or PKCepsilon. Stimulation of A2a-R in PC12 cells under the same conditions as those required for A2a desensitization resulted in an increase in Ca2+-independent PKC activity. Most importantly, exogenous PKC did not further suppress AC6 activity in A2a-desensitized membranes. In vitro PKC phosphorylation of AC6 isolated from A2a-desensitized cells was also profoundly lower than that from control cells, suggesting a specific role for PKC in regulating AC6 during A2a desensitization in PC12 cells. Taken together, our data demonstrate that a calcium-independent, novel PKC inhibits AC6 activity during A2a desensitization in PC12 cells. Independent regulation of AC6 by calcium-independent PKC and by Ca2+ provides an exquisite mechanism for integrating signaling pathways to fine-tune cAMP synthesis.
- Published
- 1997
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.