8 results on '"Kolanus, W."'
Search Results
2. Phosphoinositide 3-OH kinase activates the beta2 integrin adhesion pathway and induces membrane recruitment of cytohesin-1.
- Author
-
Nagel, W, Zeitlmann, L, Schilcher, P, Geiger, C, Kolanus, J, and Kolanus, W
- Abstract
Signal transduction through phosphoinositide 3-OH kinase (PI 3-kinase) has been implicated in the regulation of lymphocyte adhesion mediated by integrin receptors. Cellular phosphorylation products of PI 3-kinases interact with a subset of pleckstrin homology (PH) domains, a module that has been shown to recruit proteins to cellular membranes. We have recently identified cytohesin-1, a cytoplasmic regulator of beta2 integrin adhesion to intercellular adhesion molecule 1. We describe here that expression of a constitutively active PI 3-kinase is sufficient for the activation of Jurkat cell adhesion to intercellular adhesion molecule 1, and for enhanced membrane association of cytohesin-1. Up-regulation of cell adhesion by PI 3-kinase and membrane association of endogenous cytohesin-1 is abrogated by overexpression of the isolated cytohesin-1 PH domain, but not by a mutant of the PH domain which fails to associate with the plasma membrane. The PH domain of Bruton's tyrosine kinase (Btk), although strongly associated with the plasma membrane, had no effect on either membrane recruitment of cytohesin-1 or on induction of adhesion by PI 3-kinase. Having delineated the critical steps of the beta2 integrin activation pathway by biochemical and functional analyses, we conclude that PI 3-kinase activates inside-out signaling of beta2 integrins at least partially through cytohesin-1.
- Published
- 1998
3. The human WD repeat protein WAIT-1 specifically interacts with the cytoplasmic tails of beta7-integrins.
- Author
-
Rietzler, M, Bittner, M, Kolanus, W, Schuster, A, and Holzmann, B
- Abstract
Integrins of the beta7 subfamily, alpha4 beta7 and alphaE beta7, contribute to lymphocyte homing and to the development of protective or autoreactive immune responses at mucosal sites. The beta subunits of integrins are considered important for regulation of stimulated cell adhesion and adhesion-dependent signal transduction. Using a yeast interaction trap screen, a human WD repeat protein, termed WAIT-1, was isolated that interacts with the integrin beta7 cytoplasmic tail and is homologous to mouse EED and Drosophila ESC proteins. WAIT-1 also binds to the cytoplasmic domains of alpha4 and alphaE but not to those of integrin beta1, beta2, and alphaL subunits. Association of WAIT-1 and beta7-integrin was confirmed by coprecipitation from transiently transfected 293 cells. The binding site for WAIT-1 was mapped to a short membrane-proximal region of the beta7 cytoplasmic tail with Tyr-735 being of critical importance. Northern blot analysis revealed multiple WAIT-1-related transcripts with differential expression in circulating leukocytes, tissue-resident cells of diverse origin, and lymphoid malignancies. These results suggest that WAIT-1, together with the recently identified RACK1, may define a novel subfamily of WD repeat proteins that interact with distinct subsets of integrin cytoplasmic tails and may act as specific regulators of integrin function.
- Published
- 1998
4. T cell activation induced by novel gain-of-function mutants of Syk and ZAP-70.
- Author
-
Zeitlmann, L, Knorr, T, Knoll, M, Romeo, C, Sirim, P, and Kolanus, W
- Abstract
The Syk family tyrosine kinases play a crucial role in antigen receptor-mediated signal transduction, but their regulation and cellular targets remain incompletely defined. Following receptor engagement, phosphorylation of tyrosine residues within ZAP-70 and Syk is thought to control both kinase activity and recruitment of modulatory factors. We report here the characterization of novel mutants of ZAP-70 and Syk, in which conserved C-terminal tyrosine residues have been replaced by phenylalanines (ZAP YF-C, Syk YF-C). Both mutant kinases display a prominent gain-of-function phenotype in Jurkat T cells, as demonstrated by lymphokine promoter activation, tyrosine phosphorylation of potential targets in vivo, and elevated intracellular calcium mobilization. While the presence of p56-Lck was required for ZAP YF-C-induced signaling, Syk YF-C showed enhanced functional activity in Lck-deficient JCaM1 Jurkat cells. Our results implicate the C terminus of Syk family kinases as an important regulatory region modulating T cell activation.
- Published
- 1998
5. The human low affinity immunoglobulin G Fc receptor III-A and III-B genes. Molecular characterization of the promoter regions.
- Author
-
Gessner, J E, Grussenmeyer, T, Kolanus, W, and Schmidt, R E
- Abstract
The human Fc receptor with low affinity for IgG (Fc gamma RIII, CD16) is encoded by two nearly identical genes, Fc gamma RIII-A and Fc gamma RIII-B, resulting in tissue-specific expression of alternative membrane-anchored isoforms. The transmembrane CD16 receptor forms a heteromeric structure with the Fc epsilon RI (gamma) and/or CD3 (zeta) subunits on the surface of activated monocytes/macrophages, NK cells, and a subset of T cells. The expression of the glycosylphosphatidylinositol-anchored CD16 isoform encoded by the Fc gamma RIII-B gene is restricted to polymorphonuclear leukocytes and can be induced by Me2SO differentiation of HL60 cells. We have isolated and sequenced genomic clones of the human Fc gamma RIII-A and Fc gamma RIII-B genes, located their transcription initiation sites, identified a different organization of their 5' regions, and demonstrated four distinct classes of Fc gamma RIII-A transcripts (a1-a4) compared with a single class of Fc gamma RIII-Bb1 transcripts. Both CD16 promoters (positions -198 to -10) lack the classical "TATA" positioning consensus sequence but confer transcriptional activity when coupled to the human lysozyme enhancer. Both promoters also display different tissue-specific transcriptional activities reflecting the expected gene expression of Fc gamma RIII-A and Fc gamma RIII-B in NK cells versus polymorphonuclear leukocytes. Within the -198/-10 fragments, the sequences of the two CD16 genes have been identified to differ in 10 positions. It is suggested that these nucleotide differences might contribute to cell type-specific transcription of Fc gamma RIII genes.
- Published
- 1995
6. Molecular events associated with CD4-mediated Down-regulation of LFA-1-dependent adhesion.
- Author
-
Mazerolles F, Barbat C, Trucy M, Kolanus W, and Fischer A
- Subjects
- Cell Adhesion Molecules metabolism, Cell Line, Down-Regulation, Intracellular Signaling Peptides and Proteins, Ligands, Microscopy, Confocal, Models, Biological, Phosphatidylinositol 3-Kinases metabolism, Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases, Phosphoproteins metabolism, Phosphoric Monoester Hydrolases metabolism, Protein Transport physiology, Protein Tyrosine Phosphatase, Non-Receptor Type 11, Protein Tyrosine Phosphatase, Non-Receptor Type 6, Protein Tyrosine Phosphatases metabolism, SH2 Domain-Containing Protein Tyrosine Phosphatases, T-Lymphocytes metabolism, CD4 Antigens metabolism, Cell Adhesion physiology, Lymphocyte Function-Associated Antigen-1 metabolism
- Abstract
We have previously shown that CD4 ligand binding inhibits LFA-1-dependent adhesion between CD4+ T cells and B cells in a p56(lck)- and phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. In this work, downstream events associated with adhesion inhibition have been investigated. By using HUT78 T cell lines, CD4 ligands were shown to induce a dissociation of LFA-1 from cytohesin, a cytoplasmic protein known to bind LFA-1 and to enhance the affinity/avidity of LFA-1 for its ligand ICAM-1. A dissociation of PI3-kinase from cytohesin is also observed. In parallel, we have found that CD4 ligand binding induced a redistribution of PI3-kinase and of the tyrosine phosphatase SHP-2 to the membrane and induced a transient formation of protein interactions including PI3-kinase; an adaptor protein, Gab2; SHP-2; and a SH2 domain-containing inositol phosphatase, SHIP. By using antisense oligonucleotides or transfection of transdominant mutants, down-regulation of adhesion was shown to require the Gab2/PI3-kinase association and the expression of SHIP and SHP-2. We therefore propose that CD4 ligands, by inducing these molecular associations, lead to sustained local high levels of D-3 phospholipids and possibly regulate the cytohesin/LFA-1 association.
- Published
- 2002
- Full Text
- View/download PDF
7. Actin cytoskeletal association of cytohesin-1 is regulated by specific phosphorylation of its carboxyl-terminal polybasic domain.
- Author
-
Dierks H, Kolanus J, and Kolanus W
- Subjects
- Animals, COS Cells, Carcinogens pharmacology, Cell Adhesion drug effects, Cell Adhesion Molecules chemistry, Cell Adhesion Molecules physiology, Cytoskeleton drug effects, Guanine Nucleotide Exchange Factors, Humans, Intercellular Adhesion Molecule-1 metabolism, Jurkat Cells, Phosphorylation drug effects, Protein Structure, Tertiary, Tetradecanoylphorbol Acetate pharmacology, Actins metabolism, Cell Adhesion Molecules metabolism, Cytoskeleton metabolism
- Abstract
Cell adhesion mediated by integrin receptors is controlled by intracellular signal transduction cascades. Cytohesin-1 is an integrin-binding protein and guanine nucleotide exchange factor that activates binding of the leukocyte integrin leukocyte function antigen-1 to its ligand, intercellular adhesion molecule 1. Cytohesin-1 bears a carboxyl-terminal pleckstrin homology domain that aids in reversible membrane recruitment and functional regulation of the protein. Although phosphoinositide-dependent membrane attachment of cytohesin-1 is mediated primarily by the pleckstrin homology domain, this function is further strengthened by a short carboxyl-terminal polybasic amino acid sequence. We show here that a serine/threonine motif within the short polybasic stretch of cytohesin-1 is phosphorylated by purified protein kinase C delta in vitro. Furthermore, the respective residues are also found to be phosphorylated after phorbol ester stimulation in vivo. Biochemical and functional analyses show that phosphorylated cytohesin-1 is able to tightly associate with the actin cytoskeleton, and we further demonstrate that phosphorylation of the protein is required for maximal leukocyte function antigen-1-mediated adhesion of Jurkat cells to intercellular adhesion molecule 1. These data suggest that both phosphatidylinositol 3-kinase and protein kinase C-dependent intracellular pathways that stimulate beta(2)-integrin-mediated adhesion of T lymphocytes converge on cytohesin-1 as functional integrator.
- Published
- 2001
- Full Text
- View/download PDF
8. Cloning of ACP33 as a novel intracellular ligand of CD4.
- Author
-
Zeitlmann L, Sirim P, Kremmer E, and Kolanus W
- Subjects
- Adaptor Proteins, Signal Transducing, Amino Acid Sequence, Animals, COS Cells, Carrier Proteins chemistry, Carrier Proteins metabolism, Cell Line, Cloning, Molecular, Endosomes metabolism, Golgi Apparatus metabolism, Humans, Ligands, Lymphocyte Activation, Lymphocyte Specific Protein Tyrosine Kinase p56(lck) metabolism, Molecular Sequence Data, Mutation, Phenotype, Protein Binding, Sequence Homology, Amino Acid, Subcellular Fractions metabolism, T-Lymphocytes immunology, CD4 Antigens metabolism, Carrier Proteins genetics
- Abstract
CD4 recruitment to T cell receptor (TCR)-peptide-major histocompatibility class II complexes is required for stabilization of low affinity antigen recognition by T lymphocytes. The cytoplasmic portion of CD4 is thought to amplify TCR-initiated signal transduction via its association with the protein tyrosine kinase p56(lck). Here we describe a novel functional determinant in the cytosolic tail of CD4 that inhibits TCR-induced T cell activation. Deletion of two conserved hydrophobic amino acids from the CD4 carboxyl terminus resulted in a pronounced enhancement of CD4-mediated T cell costimulation. This effect was observed in the presence or absence of p56(lck), implying involvement of alternative cytosolic ligands of CD4. A two-hybrid screen with the intracellular portion of CD4 identified a previously unknown 33-kDa protein, ACP33 (acidic cluster protein 33), as a novel intracellular binding partner of CD4. Since interaction with ACP33 is abolished by deletion of the hydrophobic CD4 C-terminal amino acids mediating repression of T cell activation, we propose that ACP33 modulates the stimulatory activity of CD4. Furthermore, we demonstrate that interaction with CD4 is mediated by the noncatalytic alpha/beta hydrolase fold domain of ACP33. This suggests a previously unrecognized function for alpha/beta hydrolase fold domains as a peptide binding module mediating protein-protein interactions.
- Published
- 2001
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.