14 results on '"Kieffer N"'
Search Results
2. Characterization of the human platelet glycoprotein IIIa gene. Comparison with the fibronectin receptor beta-subunit gene.
- Author
-
Lanza, F, primary, Kieffer, N, additional, Phillips, D R, additional, and Fitzgerald, L A, additional
- Published
- 1990
- Full Text
- View/download PDF
3. Divalent cations differentially regulate integrin alphaIIb cytoplasmic tail binding to beta3 and to calcium- and integrin-binding protein.
- Author
-
Vallar, L, Melchior, C, Plançon, S, Drobecq, H, Lippens, G, Regnault, V, and Kieffer, N
- Abstract
We have used recombinant or synthetic alphaIIb and beta3 integrin cytoplasmic peptides to study their in vitro complexation and ligand binding capacity by surface plasmon resonance. alpha.beta heterodimerization occurred in a 1:1 stoichiometry with a weak KD in the micromolar range. Divalent cations were not required for this association but stabilized the alpha.beta complex by decreasing the dissociation rate. alpha.beta complexation was impaired by the R995A substitution or the KVGFFKR deletion in alphaIIb but not by the beta3 S752P mutation. Recombinant calcium- and integrin-binding protein (CIB), an alphaIIb-specific ligand, bound to the alphaIIb cytoplasmic peptide in a Ca2+- or Mn2+-independent, one-to-one reaction with a KD value of 12 microM. In contrast, in vitro liquid phase binding of CIB to intact alphaIIbbeta3 occurred preferentially with Mn2+-activated alphaIIbbeta3 conformers, as demonstrated by enhanced coimmunoprecipitation of CIB with PAC-1-captured Mn2+-activated alphaIIbbeta3, suggesting that Mn2+ activation of intact alphaIIbbeta3 induces the exposure of a CIB-binding site, spontaneously exposed by the free alphaIIb peptide. Since CIB did not stimulate PAC-1 binding to inactive alphaIIbbeta3 nor prevented activated alphaIIbbeta3 occupancy by PAC-1, we conclude that CIB does not regulate alphaIIbbeta3 inside-out signaling, but rather is involved in an alphaIIbbeta3 post-receptor occupancy event.
- Published
- 1999
4. Human neutrophil elastase proteolytically activates the platelet integrin alphaIIbbeta3 through cleavage of the carboxyl terminus of the alphaIIb subunit heavy chain. Involvement in the potentiation of platelet aggregation.
- Author
-
Si-Tahar, M, Pidard, D, Balloy, V, Moniatte, M, Kieffer, N, Van Dorsselaer, A, and Chignard, M
- Abstract
Neutrophil elastase (NE) and cathepsin G are two serine proteinases released concomitantly by stimulated polymorphonuclear neutrophils. We previously demonstrated that while NE by itself does not activate human platelets, it strongly enhances the weak aggregation induced by a threshold concentration of cathepsin G (threshold of cathepsin G) (Renesto, P., and Chignard, M. (1993) Blood 82, 139-144). The aim of this study was to delineate the molecular mechanisms involved in this potentiation process. Two main pieces of data prompted us to focus on the activation of the platelet fibrinogen receptor, the alphaIIbbeta3 integrin. First, previous studies have shown this integrin to be particularly prone to proteolytic regulation of its function. Second, we found that the potentiating activity of NE on the threshold of cathepsin G-induced platelet aggregation was strictly dependent on the presence of exogenous fibrinogen. Using flow cytometry analysis, NE was shown to trigger a time-dependent binding of PAC-1 and AP-5, two monoclonal antibodies specific for the activated and ligand-occupied conformers of alphaIIbbeta3. Furthermore, the potentiated aggregation was shown to result from an increased capacity of platelets to bind fibrinogen. Indeed, the combination of NE and threshold of cathepsin G increased the binding of PAC-1 approximately 5.5-fold over basal values measured on nontreated platelets, whereas this binding raised only by approximately 3-fold in threshold of cathepsin G-stimulated platelets (p < 0.05). By contrast, phosphatidic acid accumulation, pleckstrin phosphorylation, and calcium mobilization produced by the combination of NE and threshold of cathepsin G were not significantly different from those measured with threshold of cathepsin G alone (p > 0.05), indicating that the phospholipase C/protein kinase C pathway is not involved in the potentiation of aggregation. The foregoing data, as well as the requirement of catalytically active NE to trigger alphaIIbbeta3 activation and potentiate threshold of cathepsin G-initiated platelet aggregation, led us to examine whether the structure of this integrin was affected by NE. Immunoblot and flow cytometry analysis revealed a limited proteolysis of the carboxyl terminus of the alphaIIb subunit heavy chain (alphaIIbH), as judged by the disappearance of the epitope for the monoclonal antibody PMI-1. Mass spectrometry studies performed on a synthetic peptide mapping over the cleavage domain of alphaIIbH predicted the site of proteolysis as located between Val837 and Asp838. Treatment by NE of ATP-depleted platelets or Chinese hamster ovary cells expressing human recombinant alphaIIbbeta3 clearly established that activation of the integrin was independent of signal transduction events and was concomitant with the proteolysis of alphaIIbH. In support of this latter observation, a close correlation was observed between the kinetics of proteolysis of alphaIIbH on platelets and that of expression of the ligand binding activity of alphaIIbbeta3 (r2 = 0.902, p = 0. 005). However, only a subpopulation ( approximately 25%) of the proteolyzed alphaIIbbeta3 appeared to fully express the ligand binding capacity. Altogether, these results demonstrate that NE up-regulates the fibrinogen binding activity of alphaIIbbeta3 through a restricted proteolysis of the alphaIIb subunit, and that this process is relevant for the potentiation of platelet aggregation.
- Published
- 1997
5. Distinct involvement of beta3 integrin cytoplasmic domain tyrosine residues 747 and 759 in integrin-mediated cytoskeletal assembly and phosphotyrosine signaling.
- Author
-
Schaffner-Reckinger, E, Gouon, V, Melchior, C, Plançon, S, and Kieffer, N
- Abstract
We have investigated the structural requirements of the beta3 integrin subunit cytoplasmic domain necessary for tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin during alphav beta3-mediated cell spreading. Using CHO cells transfected with various beta3 mutants, we demonstrate a close correlation between alphav beta3-mediated cell spreading and tyrosine phosphorylation of FAK and paxillin, and highlight a distinct involvement of the NPLY747 and NITY759 motifs in these signaling processes. Deletion of the NITY759 motif alone was sufficient to completely prevent alphav beta3-dependent focal contact formation, cell spreading, and FAK/paxillin phosphorylation. The single Y759A substitution induced a strong inhibitory phenotype, while the more conservative, but still phosphorylation-defective, Y759F mutation restored wild type receptor function. Alanine substitution of the highly conserved Tyr747 completely abolished alphav beta3-dependent formation of focal adhesion plaques, cell spreading, and FAK/paxillin phosphorylation, whereas a Y747F substitution only partially restored these events. As none of these mutations affected receptor-ligand interaction, our results suggest that the structural integrity of the NITY759 motif, rather than the phosphorylation status of Tyr759 is important for beta3-mediated cytoskeleton reorganization and tyrosine phosphorylation of FAK and paxillin, while the presence of Tyr at residue 747 within the NPLY747 motif is required for optimal beta3 post-ligand binding events.
- Published
- 1998
6. Expression of platelet glycoprotein Ib alpha in HEL cells.
- Author
-
Kieffer, N, Debili, N, Wicki, A, Titeux, M, Henri, A, Mishal, Z, Breton-Gorius, J, Vainchenker, W, and Clemetson, K J
- Abstract
We have previously shown that platelet glycoprotein Ib is expressed in a minority of cells of the human leukemic cell line HEL (Tabilio, A., Rosa, J. P., Testa, U., Kieffer, N., Nurden, A. T., Del Canizo, M. C., Breton-Gorius, J., and Vainchenker, W. (1984) EMBO J. 3, 453-459). In this report, we have selected a stable HEL subclone with increased expression of glycoprotein (GP) Ib as assessed by 6 different monoclonal antibodies in order to investigate the biochemical characteristics of this glycoprotein. A single polypeptide chain of apparent Mr = 60,000 was precipitated under reducing and nonreducing conditions by a specific polyclonal anti-platelet glycocalicin antibody and two anti-GPIb alpha monoclonal antibodies (AN51 and AP1), both from surface-labeled and metabolically labeled HEL cells. We were unable to demonstrate the presence of a polypeptide corresponding to the beta subunit of GPIb or GPIX which is closely associated with GPIb. Competitive immunoprecipitation performed in the presence of an excess amount of cold platelet glycocalicin completely displaced the Mr = 60,000 polypeptide. Synthesis of N-linked oligosaccharide chains on this Mr = 60,000 polypeptide was inhibited by the antibiotic tunicamycin, and a shift of the apparent Mr from 60,000 to 48,000 was observed. O-Linked oligosaccharide chains identical to platelet GPIb hexasaccharides were deficient or incomplete since no peanut agglutinin binding to the Mr = 60,000 polypeptide was observed after neuraminidase treatment of HEL cells. Thus, our results provide evidence that the Mr = 60,000 polypeptide expressed on the surface membrane of HEL cells is closely related to platelet GPIb and corresponds to an incompletely or abnormally O-glycosylated GPIb alpha subunit.
- Published
- 1986
- Full Text
- View/download PDF
7. Interplay between αvβ3 integrin and nucleolin regulates human endothelial and glioma cell migration.
- Author
-
Koutsioumpa M, Polytarchou C, Courty J, Zhang Y, Kieffer N, Mikelis C, Skandalis SS, Hellman U, Iliopoulos D, and Papadimitriou E
- Subjects
- Animals, Antineoplastic Agents pharmacology, Biomarkers metabolism, CHO Cells, Carrier Proteins metabolism, Cell Membrane metabolism, Cricetinae, Cytokines metabolism, Humans, Integrin alphaVbeta3 metabolism, Microscopy, Fluorescence methods, Neovascularization, Pathologic, Phosphorylation, Rats, Signal Transduction, Nucleolin, Cell Movement, Endothelial Cells cytology, Gene Expression Regulation, Neoplastic, Glioma metabolism, Phosphoproteins metabolism, RNA-Binding Proteins metabolism
- Abstract
The multifunctional protein nucleolin (NCL) is overexpressed on the surface of activated endothelial and tumor cells and mediates the stimulatory actions of several angiogenic growth factors, such as pleiotrophin (PTN). Because α(v)β(3) integrin is also required for PTN-induced cell migration, the aim of the present work was to study the interplay between NCL and α(v)β(3) by using biochemical, immunofluorescence, and proximity ligation assays in cells with genetically altered expression of the studied molecules. Interestingly, cell surface NCL localization was detected only in cells expressing α(v)β(3) and depended on the phosphorylation of β(3) at Tyr(773) through receptor protein-tyrosine phosphatase β/ζ (RPTPβ/ζ) and c-Src activation. Downstream of α(v)β(3,) PI3K activity mediated this phenomenon and cell surface NCL was found to interact with both α(v)β(3) and RPTPβ/ζ. Positive correlation of cell surface NCL and α(v)β(3) expression was also observed in human glioblastoma tissue arrays, and inhibition of cell migration by cell surface NCL antagonists was observed only in cells expressing α(v)β(3). Collectively, these data suggest that both expression and β(3) integrin phosphorylation at Tyr(773) determine the cell surface localization of NCL downstream of the RPTPβ/ζ/c-Src signaling cascade and can be used as a biomarker for the use of cell surface NCL antagonists as anticancer agents.
- Published
- 2013
- Full Text
- View/download PDF
8. The novel S527F mutation in the integrin beta3 chain induces a high affinity alphaIIbbeta3 receptor by hindering adoption of the bent conformation.
- Author
-
Vanhoorelbeke K, De Meyer SF, Pareyn I, Melchior C, Plançon S, Margue C, Pradier O, Fondu P, Kieffer N, Springer TA, and Deckmyn H
- Subjects
- Adult, Animals, Antibodies metabolism, Binding Sites, Blood Platelet Disorders genetics, CHO Cells, Cell Membrane metabolism, Cricetinae, Cricetulus, Epitopes immunology, Fibrinogen metabolism, Humans, Integrin beta3 chemistry, Male, Mutant Proteins metabolism, Phenylalanine genetics, Protein Binding, Protein Conformation, Serine genetics, Amino Acid Substitution genetics, Integrin beta3 genetics, Mutation genetics, Platelet Glycoprotein GPIIb-IIIa Complex chemistry, Platelet Glycoprotein GPIIb-IIIa Complex genetics
- Abstract
Three heterozygous mutations were identified in the genes encoding platelet integrin receptor alphaIIbbeta3 in a patient with an ill defined platelet disorder: one in the beta3 gene (S527F) and two in the alphaIIb gene (R512W and L841M). Five stable Chinese hamster ovary cell lines were constructed expressing recombinant alphaIIbbeta3 receptors bearing the individual R512W, L841M, or S527F mutation; both the R512W and L841M mutations; or all three mutations. All receptors were expressed on the cell surface, and mutations R512W and L841M had no effect on integrin function. Interestingly, the beta3 S527F mutation produced a constitutively active receptor. Indeed, both fibrinogen and the ligand-mimetic antibody PAC-1 bound to non-activated alphaIIbbeta3 receptors carrying the S527F mutation, indicating that the conformation of this receptor was altered and corresponded to the high affinity ligand binding state. In addition, the conformational change induced by S527F was evident from basal anti-ligand-induced binding site antibody binding to the receptor. A molecular model bearing this mutation was constructed based on the crystal structure of alphaIIbbeta3 and revealed that the S527F mutation, situated in the third integrin epidermal growth factor-like (I-EGF3) domain, hindered the alphaIIbbeta3 receptor from adopting a wild type-like bent conformation. Movement of I-EGF3 into a cleft in the bent conformation may be hampered both by steric hindrance between Phe(527) in beta3 and the calf-1 domain in alphaIIb and by decreased flexibility between I-EGF2 and I-EGF3.
- Published
- 2009
- Full Text
- View/download PDF
9. The talin rod IBS2 alpha-helix interacts with the beta3 integrin cytoplasmic tail membrane-proximal helix by establishing charge complementary salt bridges.
- Author
-
Rodius S, Chaloin O, Moes M, Schaffner-Reckinger E, Landrieu I, Lippens G, Lin M, Zhang J, and Kieffer N
- Subjects
- Actin Cytoskeleton chemistry, Actin Cytoskeleton genetics, Actin Cytoskeleton metabolism, Animals, CHO Cells, Cricetinae, Cricetulus, Humans, Integrin beta3 chemistry, Integrin beta3 genetics, Peptide Mapping methods, Platelet Membrane Glycoprotein IIb chemistry, Platelet Membrane Glycoprotein IIb genetics, Platelet Membrane Glycoprotein IIb metabolism, Protein Binding physiology, Protein Structure, Secondary physiology, Protein Structure, Tertiary physiology, Talin chemistry, Talin genetics, Integrin beta3 metabolism, Models, Molecular, Talin metabolism
- Abstract
Talin establishes a major link between integrins and actin filaments and contains two distinct integrin binding sites: one, IBS1, located in the talin head domain and involved in integrin activation and a second, IBS2, that maps to helix 50 of the talin rod domain and is essential for linking integrin beta subunits to the cytoskeleton ( Moes, M., Rodius, S., Coleman, S. J., Monkley, S. J., Goormaghtigh, E., Tremuth, L., Kox, C., van der Holst, P. P., Critchley, D. R., and Kieffer, N. (2007) J. Biol. Chem. 282, 17280-17288 ). Through the combined approach of mutational analysis of the beta3 integrin cytoplasmic tail and the talin rod IBS2 site, SPR binding studies, as well as site-specific antibody inhibition experiments, we provide evidence that the integrin beta3-talin rod interaction relies on a helix-helix association between alpha-helix 50 of the talin rod domain and the membrane-proximal alpha-helix of the beta3 integrin cytoplasmic tail. Moreover, charge complementarity between the highly conserved talin rod IBS2 lysine residues and integrin beta3 glutamic acid residues is necessary for this interaction. Our results support a model in which talin IBS2 binds to the same face of the beta3 subunit cytoplasmic helix as the integrin alphaIIb cytoplasmic tail helix, suggesting that IBS2 can only interact with the beta3 subunit following integrin activation.
- Published
- 2008
- Full Text
- View/download PDF
10. The integrin binding site 2 (IBS2) in the talin rod domain is essential for linking integrin beta subunits to the cytoskeleton.
- Author
-
Moes M, Rodius S, Coleman SJ, Monkley SJ, Goormaghtigh E, Tremuth L, Kox C, van der Holst PP, Critchley DR, and Kieffer N
- Subjects
- Amino Acid Sequence, Animals, Binding Sites, CHO Cells, Cricetinae, Cricetulus, Fluorescent Antibody Technique, Indirect, Humans, Hydrolysis, Molecular Sequence Data, Mutagenesis, Sequence Homology, Amino Acid, Spectrophotometry, Infrared, Talin chemistry, Talin genetics, Cytoskeleton metabolism, Integrins metabolism, Talin metabolism
- Abstract
Talin1 is a large cytoskeletal protein that links integrins to actin filaments through two distinct integrin binding sites, one present in the talin head domain (IBS1) necessary for integrin activation and a second (IBS2) that we have previously mapped to talin residues 1984-2113 (fragment J) of the talin rod domain (1 Tremuth, L., Kreis, S., Melchior, C., Hoebeke, J., Ronde, P., Plancon, S., Takeda, K., and Kieffer, N. (2004) J. Biol. Chem. 279, 22258-22266), but whose functional role is still elusive. Using a bioinformatics and cell biology approach, we have determined the minimal structure of IBS2 and show that this integrin binding site corresponds to 23 residues located in alpha helix 50 of the talin rod domain (residues 2077-2099). Alanine mutation of 2 highly conserved residues (L2094A/I2095A) within this alpha helix, which disrupted the alpha-helical structure of IBS2 as demonstrated by infrared spectroscopy and limited trypsin proteolysis, was sufficient to prevent in vivo talin fragment J targeting to alphaIIbbeta3 integrin in focal adhesions and to inhibit in vitro this association as shown by an alphaIIbbeta3 pulldown assay. Moreover, expression of a full-length mouse green fluorescent protein-talin LI/AA mutant in mouse talin1(-/-) cells was unable to rescue the inability of these cells to assemble focal adhesions (in contrast to green fluorescent protein-talin wild type) despite the presence of IBS1. Our data provide the first direct evidence that IBS2 in the talin rod is essential to link integrins to the cytoskeleton.
- Published
- 2007
- Full Text
- View/download PDF
11. A new functional role of the fibrinogen RGD motif as the molecular switch that selectively triggers integrin alphaIIbbeta3-dependent RhoA activation during cell spreading.
- Author
-
Salsmann A, Schaffner-Reckinger E, Kabile F, Plançon S, and Kieffer N
- Subjects
- Amino Acid Motifs, Amino Acid Sequence, Animals, Blood Platelets metabolism, CHO Cells, Cell Adhesion, Cricetinae, Cricetulus, Enzyme Activation, Fibrinogen chemistry, Fibrinolysin metabolism, Flow Cytometry, Fluorescein-5-isothiocyanate, Fluorescent Dyes, Focal Adhesion Protein-Tyrosine Kinases metabolism, Humans, Kinetics, Ligands, Microscopy, Fluorescence, Mutation, Phalloidine metabolism, Platelet Glycoprotein GPIIb-IIIa Complex genetics, Protein Conformation, Rhodamines, Transfection, Fibrinogen metabolism, Platelet Activation, Platelet Glycoprotein GPIIb-IIIa Complex metabolism, rhoA GTP-Binding Protein metabolism
- Abstract
A number of RGD-type integrins rely on a synergistic site in addition to the canonical RGD site for ligand binding and signaling, although it is still unclear whether these two recognition sites function independently, synergistically, or competitively. Experimental evidence has suggested that fibrinogen binding to the RGD-type integrin alphaIIbbeta3 occurs exclusively through the synergistic gamma(400-411) sequence, thus questioning the functional role of the RGD recognition site. Here we have investigated the respective role of the fibrinogen gamma(400-411) sequence and the RGD motif in the molecular events leading to ligand-induced alphaIIbbeta3-dependent Chinese hamster ovary (CHO) cell or platelet spreading, by using intact fibrinogen and well characterized plasmin-generated fibrinogen fragments containing either the RGD motif (fragment C) or the gamma(400-411) sequence (fragment D), and CHO cells expressing resting wild type (alphaIIbbeta3wt), constitutively active (alphaIIbbeta3T562N), or non-functional (alphaIIbbeta3D119Y) receptors. Our data provide evidence that the gamma(400-411) site by itself is able to initiate alphaIIbbeta3 clustering and recruitment of intracellular proteins to early focal complexes, mediating cell attachment, FAK phosphorylation, and Rac1 activation, while the RGD motif subsequently acts as a molecular switch on the beta3 subunit to trigger cell spreading. More importantly, we show that the premier functional role of the RGD site is not to reinforce cell attachment but, rather, to imprint a conformational change on the beta3 subunit leading to maximal RhoA activation and actin cytoskeleton organization in CHO cells as well as in platelets. Finally, alphaIIbbeta3-dependent RhoA stimulation and cell spreading, but not cell attachment, are Src-dependent and phosphoinositide 3-kinase-independent and are inhibited by the Src antagonist PP2.
- Published
- 2005
- Full Text
- View/download PDF
12. A fluorescence cell biology approach to map the second integrin-binding site of talin to a 130-amino acid sequence within the rod domain.
- Author
-
Tremuth L, Kreis S, Melchior C, Hoebeke J, Rondé P, Plançon S, Takeda K, and Kieffer N
- Subjects
- Actins chemistry, Animals, Binding Sites, CHO Cells, Cell Line, Coloring Agents pharmacology, Cricetinae, Cytoskeleton metabolism, DNA, Complementary metabolism, Escherichia coli metabolism, Flow Cytometry, Fluorescent Antibody Technique, Indirect, Glutathione Transferase metabolism, Green Fluorescent Proteins, Humans, Kinetics, Luminescent Proteins metabolism, Luminescent Proteins pharmacology, Models, Biological, Platelet Glycoprotein GPIIb-IIIa Complex metabolism, Protein Binding, Protein Structure, Tertiary, Recombinant Fusion Proteins metabolism, Surface Plasmon Resonance, Time Factors, Transfection, Vinculin chemistry, Fluorescence Resonance Energy Transfer methods, Integrin beta Chains chemistry, Microscopy, Fluorescence methods, Talin chemistry
- Abstract
The cytoskeletal protein talin, which provides a direct link between integrins and actin filaments, has been shown to contain two distinct binding sites for integrin beta subunits. Here, we report the precise delimitation and a first functional analysis of the talin rod domain integrin-binding site. Partially overlapping cDNAs covering the entire human talin gene were transiently expressed as DsRed fusion proteins in Chinese hamster ovary cells expressing alpha(IIb)beta(3), linked to green fluorescent protein (GFP). Two-color fluorescence analysis of the transfected cells, spread on fibrinogen, revealed distinct subcellular staining patterns including focal adhesion, actin filament, and granular labeling for different talin fragments. The rod domain fragment G (residues 1984-2344), devoid of any known actin- or vinculin-binding sites, colocalized with beta(3)-GFP in focal adhesions. Direct in vitro interaction of fragment G with native platelet integrin alpha(IIb)beta(3) or with the recombinant wild type, but not the Y747A mutant beta(3) cytoplasmic tail, linked to glutathione S-transferase, was demonstrated by surface plasmon resonance analysis and pull-down assays, respectively. Here, we demonstrate for the first time the in vivo relevance of this interaction by fluorescence resonance energy transfer between beta(3)-GFP and DsRed-talin fragment G. Further in vitro pull-down studies allowed us to map out the integrin-binding site within fragment G to a stretch of 130 residues (fragment J, residues 1984-2113) that also localized to focal adhesions. Finally, we show by a cell biology approach that this integrin-binding site within the talin rod domain is important for beta(3)-cytoskeletal interactions but does not participate in alpha(IIb)beta(3) activation.
- Published
- 2004
- Full Text
- View/download PDF
13. Probing conformational changes in the I-like domain and the cysteine-rich repeat of human beta 3 integrins following disulfide bond disruption by cysteine mutations: identification of cysteine 598 involved in alphaIIbbeta3 activation.
- Author
-
Chen P, Melchior C, Brons NH, Schlegel N, Caen J, and Kieffer N
- Subjects
- Animals, Antibodies, Monoclonal metabolism, Blotting, Western, CHO Cells, Cell Adhesion, Cell Line, Cricetinae, Cysteine genetics, DNA, Complementary metabolism, Dimerization, Disulfides, Enzyme Activation, Epitopes chemistry, Fibrinogen metabolism, Flow Cytometry, Humans, Integrin beta3, Ligands, Microscopy, Fluorescence, Models, Molecular, Precipitin Tests, Protein Conformation, Protein Structure, Tertiary, Recombinant Proteins metabolism, Transfection, Antigens, CD chemistry, Antigens, CD genetics, Cysteine chemistry, Mutation, Platelet Glycoprotein GPIIb-IIIa Complex metabolism, Platelet Membrane Glycoproteins chemistry, Platelet Membrane Glycoproteins genetics
- Abstract
We have investigated receptor function and epitope expression of recombinant alpha(IIb)beta(3) mutated at Cys(177) or Cys(273) in the I-like domain as well as Cys(598), located in the fourth repeat of the membrane-proximal cysteine-rich region and mutated in a Glanzmann's thrombasthenia type II patient. The beta(3) mutants beta(3)C177A, beta(3)C273A, and beta(3)C598Y exhibited a decreased electrophoretic mobility in SDS-polyacrylamide gel electrophoresis under nonreducing conditions, confirming the disruption of the respective disulfide loops. Despite reduced surface expression, the alpha(IIb)beta(3)C177A, alpha(IIb)beta(3)C273A, and alpha(IIb)beta(3)C598Y receptors mediated cell adhesion to immobilized fibrinogen and translocated into focal adhesion plaques. The beta(3)C598Y mutation, but not the beta(3)C177A or beta(3)C273A mutations, induced spontaneous binding of the ligand mimetic monoclonal antibody PAC-1, while the beta(3)C177A and beta(3)C273A mutants exhibited reduced complex stability in the absence of Ca(2+). Epitope mapping of function-blocking monoclonal antibodies (mAbs) allowed the identification of two distinct subgroups; mAbs A2A9, pl2-46, 10E5, and P256 did not interact with alpha(IIb)beta(3)C273A and bound only weakly to alpha(IIb)beta(3)C177A, while mAbs AP2, LM609 and 7E3 bound normally to mutant alpha(IIb)beta(3)C273A, but interacted only weakly with mutant alpha(IIb)beta(3)C177A. Furthermore, a cryptic epitope recognized by mAb 4D10G3 and not exposed on wild type alpha(IIb)beta(3) became accessible only on mutant alpha(IIb)beta(3)C177A and was mapped to the 60-kDa chymotrypsin fragment of beta(3). Finally, the ligand-induced binding site (LIBS) epitopes AP5, D3, LIBS1, and LIBS2 were spontaneously expressed on all three mutants independent of RGDS or dithiothreitol treatment. Our results provide evidence that disruption of a single cysteine disulfide bond in the cysteine-rich repeat domain, but not in the I-like domain, activates integrin alpha(IIb)beta(3). In contrast, disruption of each of the disulfide bonds in the two long insertions of the I-like domain predicted to be in close contact with the alpha subunit beta-propeller domain affect the stability of the alpha(IIb)beta(3) heterodimer and inhibit complex-specific mAb binding without affecting the RGD binding capacity of the metal ion-dependent adhesion site-like domain.
- Published
- 2001
- Full Text
- View/download PDF
14. The alpha 3(IV)185-206 peptide from noncollagenous domain 1 of type IV collagen interacts with a novel binding site on the beta 3 subunit of integrin alpha Vbeta 3 and stimulates focal adhesion kinase and phosphatidylinositol 3-kinase phosphorylation.
- Author
-
Pasco S, Monboisse JC, and Kieffer N
- Subjects
- Amino Acid Sequence, Animals, Antigens, CD chemistry, Binding Sites, CD47 Antigen, CHO Cells, Carrier Proteins physiology, Cell Adhesion, Collagen chemistry, Cricetinae, Enzyme Activation, Focal Adhesion Kinase 1, Focal Adhesion Protein-Tyrosine Kinases, Humans, Integrin beta3, Melanoma, Molecular Sequence Data, Peptide Fragments chemistry, Peptide Fragments pharmacology, Phosphorylation, Platelet Membrane Glycoproteins chemistry, Receptors, Vitronectin chemistry, Recombinant Proteins metabolism, Transfection, Tumor Cells, Cultured, Antigens, CD physiology, Collagen metabolism, Collagen pharmacology, Collagen Type IV, Peptide Fragments metabolism, Phosphatidylinositol 3-Kinases metabolism, Platelet Membrane Glycoproteins physiology, Protein-Tyrosine Kinases metabolism, Receptors, Vitronectin physiology, Transforming Growth Factor beta pharmacology, Up-Regulation drug effects
- Abstract
We have recently identified integrin alpha(v)beta(3) and the associated CD47/integrin-associated protein (IAP) together with three other proteins as the potential tumor cell receptors for the alpha(3) chain of basement membrane type IV collagen (Shahan, T.A., Ziaie, Z., Pasco, S., Fawzi, A., Bellon, G., Monboisse, J. C., and Kefalides, N. A. (1999) Cancer Res. 59, 4584-4590). Using different cell lines expressing alpha(v)beta(3), alpha(IIb)beta(3), and/or CD47 and a liquid phase receptor capture assay, we now provide direct evidence that the synthetic and biologically active alpha3(IV)185-206 peptide, derived from the alpha3(IV) chain, interacts with the beta(3) subunit of integrin alpha(v)beta(3), independently of CD47. Increased alpha3(IV) peptide binding was observed on transforming growth factor-beta(1)-stimulated HT-144 cells shown to up-regulate alpha(v)beta(3) independently of CD47. Also, incubation of HT-144 melanoma cells in suspension induced de novo exposure of ligand-induced binding site epitopes on the beta(3) subunit similar to those observed following Arg-Gly-Asp-Ser (RGDS) stimulation. However, RGDS did not prevent HT-144 cell attachment and spreading on the alpha3(IV) peptide, suggesting that the alpha3(IV) binding domain on the beta(3) subunit is distinct from the RGD recognition site. alpha3(IV) peptide binding to HT-144 cells in suspension stimulated time-dependent tyrosine phosphorylation, while the RGDS peptide did not. Two major phosphotyrosine proteins of 120-130 and 85 kDa were immunologically identified as focal adhesion kinase and phosphatidylinositol 3-kinase (PI3-kinase). A direct involvement of PI3-kinase in alpha3(IV)-dependent beta(3) integrin signaling could be documented, since pretreatment of HT-144 cells with wortmannin, a PI3-kinase inhibitor, reverted the known inhibitory effect of alpha3(IV) on HT-144 cell proliferation as well as membrane type 1-matrix metalloproteinase gene expression. These results provide evidence that the alpha3(IV)185-206 peptide, by directly interacting with the beta(3) subunit of alpha(v)beta(3), activates a signaling cascade involving focal adhesion kinase and PI3-kinase.
- Published
- 2000
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.