1. Modulation of 3-hydroxy-3-methylglutaryl-CoA reductase by 15 alpha-fluorolanost-7-en-3 beta-ol. A mechanism-based inhibitor of cholesterol biosynthesis
- Author
-
D A Leonard, Soo S. Ko, R T Fischer, Paul R. Johnson, James M. Trzaskos, M F Favata, Ronald L. Magolda, H W Chen, and James L. Gaylor
- Subjects
7-Dehydrocholesterol reductase ,Lanosterol ,Cell Biology ,Biology ,Reductase ,Biochemistry ,Hydroxymethylglutaryl-CoA reductase ,Molecular biology ,Sterol ,chemistry.chemical_compound ,chemistry ,Enzyme inhibitor ,HMG-CoA reductase ,polycyclic compounds ,biology.protein ,Demethylase ,lipids (amino acids, peptides, and proteins) ,Molecular Biology - Abstract
The chemical synthesis and metabolic characteristics of the lanosterol analogue, 15 alpha-fluorolanost-7-en-3 beta-ol, are described. The 15 alpha-fluorosterol is shown to be a competitive inhibitor of the lanosterol 14 alpha-methyl demethylase (Ki = 315 microM), as well as substrate for the demethylase enzyme. Metabolic studies show that the 15 alpha-fluorosterol is converted to the corresponding 15 alpha-fluoro-3 beta-hydroxylanost-7-en-32-aldehyde by hepatic microsomal lanosterol 14 alpha-methyl demethylase but that further metabolic conversion to cholesterol biosynthetic intermediates is blocked by virtue of the 15 alpha-fluoro substitution. When cultured cells are treated with the fluorinated lanosterol analogue, a decrease in 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase activity and immunoreactive protein was observed. However, when the lanosterol 14 alpha-methyl demethylase-deficient mutant cell line, AR45, is treated with the fluorosterol, no effect upon HMG-CoA reductase is observed. Thus, metabolic conversion of the sterol to its 32-carboxaldehyde analogue by the lanosterol 14 alpha-methyl demethylase is required for HMG-CoA reductase suppressor activity. Measurement of HMG-CoA reductase mRNA levels in 15 alpha-fluorosterol-treated Chinese hamster ovary (CHO) cells reveals that mRNA levels are not decreased by the sterol as would be expected for a sterol regulator of HMG-CoA reductase activity. The decrease in HMG-CoA reductase protein is due to inhibition of enzyme synthesis, suggesting that the 15 alpha-fluorosterol reduces the translational efficiency of the reductase mRNA. Measurements of the half-life of HMG-CoA reductase show that, in contrast to other oxysterols, the 15 alpha-fluorolanostenol does not increase the rate of degradation of the enzyme. Collectively, these data support the premise that oxylanosterols regulate HMG-CoA reductase expression through a post-transcriptional process which may be distinct from other previously described sterol regulatory mechanisms.
- Published
- 1993
- Full Text
- View/download PDF