1. Structural basis of exo-β-mannanase activity in the GH2 family.
- Author
-
Domingues MN, Souza FHM, Vieira PS, de Morais MAB, Zanphorlin LM, Dos Santos CR, Pirolla RAS, Honorato RV, de Oliveira PSL, Gozzo FC, and Murakami MT
- Subjects
- Amino Acid Sequence, Bacterial Proteins chemistry, Catalytic Domain, Crystallography, X-Ray, Hydrolysis, Kinetics, Mannans metabolism, Mannose metabolism, Models, Molecular, Protein Conformation, Scattering, Small Angle, Sequence Alignment, Substrate Specificity, X-Ray Diffraction, Xanthomonas chemistry, Xanthomonas enzymology, beta-Mannosidase chemistry, Bacterial Proteins metabolism, Xanthomonas metabolism, beta-Mannosidase metabolism
- Abstract
The classical microbial strategy for depolymerization of β-mannan polysaccharides involves the synergistic action of at least two enzymes, endo-1,4-β-mannanases and β-mannosidases. In this work, we describe the first exo-β-mannanase from the GH2 family, isolated from Xanthomonas axonopodis pv. citri (XacMan2A), which can efficiently hydrolyze both manno-oligosaccharides and β-mannan into mannose. It represents a valuable process simplification in the microbial carbon uptake that could be of potential industrial interest. Biochemical assays revealed a progressive increase in the hydrolysis rates from mannobiose to mannohexaose, which distinguishes XacMan2A from the known GH2 β-mannosidases. Crystallographic analysis indicates that the active-site topology of XacMan2A underwent profound structural changes at the positive-subsite region, by the removal of the physical barrier canonically observed in GH2 β-mannosidases, generating a more open and accessible active site with additional productive positive subsites. Besides that, XacMan2A contains two residue substitutions in relation to typical GH2 β-mannosidases, Gly
439 and Gly556 , which alter the active site volume and are essential to its mode of action. Interestingly, the only other mechanistically characterized mannose-releasing exo-β-mannanase so far is from the GH5 family, and its mode of action was attributed to the emergence of a blocking loop at the negative-subsite region of a cleft-like active site, whereas in XacMan2A, the same activity can be explained by the removal of steric barriers at the positive-subsite region in an originally pocket-like active site. Therefore, the GH2 exo-β-mannanase represents a distinct molecular route to this rare activity, expanding our knowledge about functional convergence mechanisms in carbohydrate-active enzymes., (© 2018 Domingues et al.)- Published
- 2018
- Full Text
- View/download PDF