Background: 5-HT3 receptor antagonists play a key role in the management of psychiatric disorders such as, depression and anxiety. They may act through modulation of serotonergic transmission. In the present study, a novel and potential 5-HT3 receptor antagonist, 6g (4-benzylpiperazin- 1-yl)(3-methoxyquinoxalin-2-yl) methanone, which exhibited good log P (3.08) and pA2 (7.5) values was screened for its anxiolytic property in lipopolysaccharide (LPS) induced anxiety models. Methods: LPS, an endotoxin, present in the cell wall of Gram negative bacteria was injected 0.83 mg/kg, i.p. as a single dose to induce anxiety-like symptoms in mice. Compound 6g (1 and 2 mg/kg, p.o.) and standard fluoxetine (FLX) (20 mg/kg, p.o.) were injected to treatment groups for 7 days and evaluated in various behavioral paradigms such as elevated plus maze (EPM), light and dark (L/D) test, and open field test (OFT). Their effects on serotonin levels in mice brain were also examined. Results: The results showed that LPS induced anxietylike symptoms in mice, as indicated by a significantly decreased percentage open arm entries and percentage time spent in open arms in EPM; decreased time spent in light area and number of transition between chambers in L/D test; decreased ambulation and rearing scores in OFT. Compound 6g (1 and 2 mg/kg, p.o., 7 days) and FLX treatment (20 mg/kg, p.o., 7 days) reversed the LPSinduced behavioral changes and significantly affected all the behavioral parameters mentioned above. In addition 6g (1 and 2 mg/kg, p.o., 7 days) and FLX treatment (20 mg/kg, p.o., 7 days) increased the levels of serotonin in mice brain. Conclusions: Compound 6g produced anxiolytic-like effects in various anxiety paradigms in LPS-treated mice as well as restored the decreased serotonin levels in mice brain. [ABSTRACT FROM AUTHOR]