1. The Nitrogen Regulatory PII Protein (GlnB) and N-Acetylglucosamine 6-Phosphate Epimerase (NanE) Allosterically Activate Glucosamine 6-Phosphate Deaminase (NagB) in Escherichia coli.
- Author
-
Rodionova, Irina A, Goodacre, Norman, Babu, Mohan, Emili, Andrew, Uetz, Peter, and Saier, Milton H
- Subjects
Escherichia coli ,Nitrogen ,N-Acetylneuraminic Acid ,Aldose-Ketose Isomerases ,Racemases and Epimerases ,Hexosamines ,Glucosamine ,Acetylglucosamine ,Glucose-6-Phosphate ,Escherichia coli Proteins ,Transcription Factors ,Protein Interaction Mapping ,Signal Transduction ,Gene Expression Regulation ,Bacterial ,Phosphorylation ,PII Nitrogen Regulatory Proteins ,N-acetylglucosamine 6-phosphate epimerase ,NagB ,NanE ,PII ,allosteric regulation ,glucosamine 6-phosphate deaminase/isomerase ,nitrogen regulator ,protein-protein interactions ,signal transduction ,Aetiology ,2.2 Factors relating to the physical environment ,Infection ,Biological Sciences ,Agricultural and Veterinary Sciences ,Medical and Health Sciences ,Microbiology - Abstract
Amino sugars are good sources of both ammonia and fructose-6-phosphate, produced by the glucosamine 6-phosphate deaminase, NagB. NagB is known to be allosterically regulated by N-acetylglucosamine 6-phosphate (GlcNAc-6P) and the phosphocarrier protein of the bacterial phosphotransferase system, HPr, in Escherichia coli We provide evidence that NanE, GlcNAc-6P epimerase, and the uridylylated PII protein (U-PII) also allosterically activate NagB by direct protein-protein interactions. NanE is essential for neuraminic acid (NANA) and N-acetylmannosamine (ManNAc) utilization, and PII is known to be a central metabolic nitrogen regulator. We demonstrate that uridylylated PII (but not underivatized PII) activates NagB >10-fold at low concentrations of substrate, whereas NanE increases NagB activity >2-fold. NanE activates NagB in the absence or presence of GlcNAc-6P, but HPr and U-PII activation requires the presence of GlcNAc-6P. Activation of NagB by HPr and uridylylated PII, as well as by NanE and HPr (but not by NanE and U-PII), is synergistic, and the modeling, which suggests specific residues involved in complex formation, provides possible explanations. Specific physiological functions for the regulation of NagB by its three protein activators are proposed. Each regulatory agent is suggested to mediate signal transduction in response to a different stimulus.IMPORTANCE The regulation of amino sugar utilization is important for the survival of bacteria in a competitive environment. NagB, a glucosamine 6-phosphate deaminase in Escherichia coli, is essential for amino sugar utilization and is known to be allosterically regulated by N-acetylglucosamine 6-phosphate (GlcNAc-6P) and the histidine-phosphorylatable phosphocarrier protein, HPr. We provide evidence here that NanE, GlcNAc-6P epimerase, and the uridylylated PII protein allosterically activate NagB by direct protein-protein interactions. NanE is essential for N-acetylneuraminic acid (NANA) and N-acetylmannosamine (ManNAc) utilization, and the PII protein is known to be a central metabolic nitrogen regulator. Regulatory links between carbon and nitrogen metabolism are important for adaptation of metabolism to different growth conditions.
- Published
- 2018