Foreman, Sara, Ferrara, Kristina, Hreha, Teri N., Duran-Pinedo, Ana E., Frias-Lopez, Jorge, and Barquera, Blanca
Pseudomonas aeruginosa has four Na+/H+ antiporters that interconvert and balance Na+ and H+ gradients across the membrane. These gradients are important for bioenergetics and ionic homeostasis. To understand these transporters, we constructed four strains, each of which has only one antiporter, i.e., NhaB, NhaP, NhaP2, and Mrp. We also constructed a quadruple deletion mutant that has no Na+/H+ antiporters. Although the antiporters of P. aeruginosa have been studied previously, the strains constructed here present the opportunity to characterize their kinetic properties in their native membranes and their roles in the physiology of P. aeruginosa. The strains expressing only NhaB or Mrp, the two electrogenic antiporters, were able to grow essentially like the wild-type strain across a range of Na+ concentrations and pH values. Strains with only NhaP or NhaP2, which are electroneutral, grew more poorly at increasing Na+ concentrations, especially at high pH values, with the strain expressing NhaP being more sensitive. The strain with no Na+/H+ antiporters was extremely sensitive to the Na+ concentration and showed essentially no Na+(Li+)/H+ antiporter activity, but it retained most K+/H+ antiporter activity of the wild-type strain at pH 7.5 and approximately one-half at pH 8.5. We also used the four strains that each express one of the four antiporters to characterize the kinetic properties of each transporter. Transcriptome sequencing analysis of the quadruple deletion strain showed widespread changes, including changes in pyocyanin synthesis, biofilm formation, and nitrate and glycerol metabolism. Thus, the strains constructed for this study will open a new door to understanding the physiological roles of these proteins and their activities in P. aeruginosa. [ABSTRACT FROM AUTHOR]