3 results on '"Ergon, T"'
Search Results
2. Size- and stage-dependence in cause-specific mortality of migratory brown trout.
- Author
-
Nater CR, Vindenes Y, Aass P, Cole D, Langangen Ø, Moe SJ, Rustadbakken A, Turek D, Vøllestad LA, and Ergon T
- Subjects
- Animals, Body Size, Cause of Death, Norway, Trout
- Abstract
Evidence-based management of natural populations under strong human influence frequently requires not only estimates of survival but also knowledge about how much mortality is due to anthropogenic vs. natural causes. This is the case particularly when individuals vary in their vulnerability to different causes of mortality due to traits, life history stages, or locations. Here, we estimated harvest and background (other cause) mortality of landlocked migratory salmonids over half a century. In doing so, we quantified among-individual variation in vulnerability to cause-specific mortality resulting from differences in body size and spawning location relative to a hydropower dam. We constructed a multistate mark-recapture model to estimate harvest and background mortality hazard rates as functions of a discrete state (spawning location) and an individual time-varying covariate (body size). We further accounted for among-year variation in mortality and migratory behaviour and fit the model to a unique 50-year time series of mark-recapture-recovery data on brown trout (Salmo trutta) in Norway. Harvest mortality was highest for intermediate-sized trout, and outweighed background mortality for most of the observed size range. Background mortality decreased with body size for trout spawning above the dam and increased for those spawning below. All vital rates varied substantially over time, but a trend was evident only in estimates of fishers' reporting rate, which decreased from over 50% to less than 10% throughout the study period. We highlight the importance of body size for cause-specific mortality and demonstrate how this can be estimated using a novel hazard rate parameterization for mark-recapture models. Our approach allows estimating effects of individual traits and environment on cause-specific mortality without confounding, and provides an intuitive way to estimate temporal patterns within and correlation among different mortality sources., (© 2020 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.)
- Published
- 2020
- Full Text
- View/download PDF
3. Seasonal effects of Pacific-based climate on recruitment in a predator-limited large herbivore.
- Author
-
Hegel TM, Mysterud A, Ergon T, Loe LE, Huettmann F, and Stenseth NC
- Subjects
- Animals, Female, Male, Models, Biological, Population Dynamics, Wolves physiology, Yukon Territory, Climate, Ecosystem, Reindeer physiology, Seasons
- Abstract
1. Climate is an important factor influencing the population dynamics of large herbivores operating directly on individuals or through its effect on forage characteristics. However, the seasonal effect of climate may differ between forage- and predator-limited populations because of a climatic influence on predation rates. The influence of climate on predator-limited large herbivores is less well known than on forage-limited populations. Further, the effect of Pacific-based climate on large herbivore populations has been rarely assessed. 2. We investigated the effect of the Pacific Decadal Oscillation (PDO), across different seasons, on recruitment in 10 populations (herds) of mountain-dwelling caribou Rangifer tarandus caribou L. in the Yukon Territory, Canada. These low-density populations occur in highly seasonal environments and are considered predator-limited with high neonatal calf mortality. Hence, in most years females do not spend resources through lactational support during the summer and resource intake is devoted to self-maintenance. We predicted that climate affecting environmental conditions at calving would have a strong effect on recruitment via its influence on predation rates. We also predicted that climatic conditions prior to conception could have an effect on recruitment through its influence on female fecundity. We modelled recruitment (n = 165) by seasonal PDO values using generalized linear mixed-effects models with herd-varying coefficients. 3. We found that recruitment variability was best explained by variation in winter climate (beta = 0.110, SE = 0.007) prior to birth (in utero) and May climate (beta = 0.013, SE = 0.006) at calving. There was little support for a pre-conception climate effect influencing female body condition and hence fecundity. These results confirm that recruitment in these populations is limited by predation and that forage-limitation is not a significant factor in their population dynamics. There was considerable variability in herd-specific relationships between the PDO and recruitment. Incorporating herd-specific characteristics, such as variable predator densities or terrain characteristics within a herd range, may shed greater light on the complex relationship between climate and ungulate population dynamics.
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.