1. Black Hole and Selective Forwarding Attack Detection and Prevention in IoT in Health Care Sector: Hybrid meta-heuristic-based shortest path routing
- Author
-
Srinivas, T. Aditya Sai and Manivannan, S.S.
- Abstract
In the current health care scenario, security is the major concern in IoT-WSN with more devices or nodes. Attack or anomaly detection in the IoT infrastructure is increasing distress in the field of medical IoT. With the enormous usage of IoT infrastructure in every province, threats and attacks in these infrastructures are also mounting commensurately. This paper intends to develop a security mechanism to detect and prevent the black hole and selective forwarding attack from medical IoT-WSN. The proposed secure strategy is developed in five stages: First is selecting the cluster heads, second is generating k-routing paths, third is security against black hole attack, fourth is security against the selective forwarding attack, and the last is optimal shortest route path selection. Initially, a topology is developed for finding the cluster heads and discovering the best route. In the next phase, the black hole attacks are detected and prevented by the bait process. For detecting the selective forwarding attacks, the packet validation is done by checking the transmitted packet and the received packet. For promoting the packet security, Elliptic Curve Cryptography (ECC)-based hashing function is deployed. As the main contribution of this paper, optimal shortest route path is determined by the proposed hybrid algorithm with the integration of Deer Hunting Optimization Algorithm (DHOA), and DragonFly Algorithm (DA) termed Dragonfly-based DHOA (D-DHOA) by concerting the parameters like trust, distance, delay or latency and packet loss ratio in the objective model. Hence, the entire phases will be very active in detecting and preventing the two fundamental attacks like a black hole and selective forwarding from IoT-WSN in the health care sector.
- Published
- 2021
- Full Text
- View/download PDF