1. Elevated CO2 affects plant nitrogen and water‐soluble carbohydrates but not in vitro metabolisable energy.
- Author
-
Panozzo, Joe Francis, Walker, Cassandra Kiely, Maharjan, Pankaj, Partington, Debra L., and Korte, Chris J.
- Subjects
CHEMICAL composition of plants ,NUTRITIVE value of feeds ,CARBOHYDRATES ,CARBOHYDRATE content of food ,LOW temperatures ,SOIL moisture - Abstract
The effects of elevated concentrations of atmospheric CO2 (e[CO2]) on the nutritive value of wheat vegetative matter and grain as a feedstock for ruminants were investigated in a study undertaken at the Australian grains free‐air CO2 enrichment (AGFACE) facility. The study included two commercial wheat cultivars (Janz and Yitpi) and two genetic selections from a Seri/Babex population (SB003 and SB062) which had previously been characterised for low and high water‐soluble carbohydrate accumulation efficiency. The trial was grown under ambient (~390 µmol/mol) and elevated (~550 µmol/mol) CO2 conditions, and plants harvested at tillering, anthesis and physiological maturity. Composition analyses to determine the nutritive value for ruminant feed were undertaken on stems, leaves and grain. Plant and grain nitrogen were reduced in the e[CO2] treatments, and as expected, the water‐soluble carbohydrates increased. All genotypes responded to e[CO2] with the effects of altered composition evident within 60 days of sowing. Determinants of ruminant feed quality such as neutral and acid detergent fibre and estimated in vitro metabolisable energy were not significantly affected. The reduced plant and grain N will impact on the nutritive value and supplementation may be required. The impact of e[CO2] on chemical composition of wheat plants may be greater if the predicted climate change is associated with concomitant abiotic stress such as high ambient temperature or low soil moisture. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF