1. Variation of singular Kähler–Einstein metrics: Positive Kodaira dimension
- Author
-
Henri Guenancia, Mihai Păun, Junyan Cao, Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), School of Mathematics (KIAS Séoul), Korea Institute for Advanced Study (KIAS), University of Illinois [Chicago] (UIC), University of Illinois System, Universität Bayreuth, Stony Brook University [SUNY] (SBU), State University of New York (SUNY), Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,Mathematics::Complex Variables ,Mathematics - Complex Variables ,Applied Mathematics ,General Mathematics ,010102 general mathematics ,[MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV] ,01 natural sciences ,Mathematics - Algebraic Geometry ,symbols.namesake ,Variation (linguistics) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,0103 physical sciences ,symbols ,Kodaira dimension ,Mathematics::Differential Geometry ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,010307 mathematical physics ,0101 mathematics ,Einstein ,Mathematics::Symplectic Geometry ,Mathematics - Abstract
Given a K\"ahler fiber space $p:X\to Y$ whose generic fiber is of general type, we prove that the fiberwise singular K\"ahler-Einstein metric induces a semipositively curved metric on the relative canonical bundle $K_{X/Y}$ of $p$. We also propose a conjectural generalization of this result for relative twisted K\"ahler-Einstein metrics. Then we show that our conjecture holds true if the Lelong numbers of the twisting current are zero. Finally, we explain the relevance of our conjecture for the study of fiber-wise Song-Tian metrics (which represent the analogue of KE metrics for fiber spaces whose generic fiber has positive but not necessarily maximal Kodaira dimension)., Comment: v2: Title changed as the initial text is now split into two separate articles (authored by the same persons). The main results we obtain here are less general than their respective counterparts in the previous version, due to a gap in our arguments
- Published
- 2021
- Full Text
- View/download PDF