1. Pb-free solders for flip-chip interconnects
- Author
-
J. W. Jang, J. K. Lin, D. R. Frear, and C. Zhang
- Subjects
Materials science ,Alloy ,Metallurgy ,General Engineering ,Intermetallic ,chemistry.chemical_element ,engineering.material ,chemistry ,Soldering ,engineering ,Shear strength ,General Materials Science ,Lamellar structure ,Tin ,Flip chip ,Eutectic system - Abstract
A variety of lead-free solder alloys were studied for use as flip-chip interconnects including Sn-3.5Ag, Sn-0.7Cu, Sn-3.8Ag-0.7Cu, and eutectic Sn-37Pb as a baseline. The reaction behavior and reliability of these solders were determined in a flip-chip configuration using a variety of under-bump metallurgies (TiW/Cu, electrolytic nickel, and electroless Ni-P/Au). The solder micro-structure and intermetallic reaction products and kinetics were determined. The Sn-0.7Cu solder has a large grain structure and the Sn-3.5Ag and Sn-3.8Ag-0.7Cu have a fine lamellar two-phase structure of tin and Ag3Sn. The intermetallic compounds were similar for all the lead-free alloys. On Ni, Ni3Sn4 formed and on copper, Cu6Sn5Cu3Sn formed. During reflow, the intermetallic growth rate was faster for the lead-free alloys, compared to eutectic tin-lead. In solidstate aging, however, the interfacial intermetallic compounds grew faster with the tinlead solder than for the lead-free alloys. The reliability tests performed included shear strength and thermomechanical fatigue. The lower strength Sn-0.7Cu alloy also had the best thermomechanical fatigue behavior. Failures occurred near the solder/intermetallic interface for all the alloys except Sn-0.7Cu, which deformed by grain sliding and failed in the center of the joint. Based on this study, the optimal solder alloy for flip-chip applications is identified as eutectic Sn-0.7Cu.
- Published
- 2001
- Full Text
- View/download PDF