3 results on '"Manyakov NV"'
Search Results
2. The Association Between Home Stay and Symptom Severity in Major Depressive Disorder: Preliminary Findings From a Multicenter Observational Study Using Geolocation Data From Smartphones.
- Author
-
Laiou P, Kaliukhovich DA, Folarin AA, Ranjan Y, Rashid Z, Conde P, Stewart C, Sun S, Zhang Y, Matcham F, Ivan A, Lavelle G, Siddi S, Lamers F, Penninx BW, Haro JM, Annas P, Cummins N, Vairavan S, Manyakov NV, Narayan VA, Dobson RJ, and Hotopf M
- Subjects
- Humans, Recurrence, Smartphone, Surveys and Questionnaires, United Kingdom, Depressive Disorder, Major diagnosis, Depressive Disorder, Major epidemiology
- Abstract
Background: Most smartphones and wearables are currently equipped with location sensing (using GPS and mobile network information), which enables continuous location tracking of their users. Several studies have reported that various mobility metrics, as well as home stay, that is, the amount of time an individual spends at home in a day, are associated with symptom severity in people with major depressive disorder (MDD). Owing to the use of small and homogeneous cohorts of participants, it is uncertain whether the findings reported in those studies generalize to a broader population of individuals with MDD symptoms., Objective: The objective of this study is to examine the relationship between the overall severity of depressive symptoms, as assessed by the 8-item Patient Health Questionnaire, and median daily home stay over the 2 weeks preceding the completion of a questionnaire in individuals with MDD., Methods: We used questionnaire and geolocation data of 164 participants with MDD collected in the observational Remote Assessment of Disease and Relapse-Major Depressive Disorder study. The participants were recruited from three study sites: King's College London in the United Kingdom (109/164, 66.5%); Vrije Universiteit Medisch Centrum in Amsterdam, the Netherlands (17/164, 10.4%); and Centro de Investigación Biomédica en Red in Barcelona, Spain (38/164, 23.2%). We used a linear regression model and a resampling technique (n=100 draws) to investigate the relationship between home stay and the overall severity of MDD symptoms. Participant age at enrollment, gender, occupational status, and geolocation data quality metrics were included in the model as additional explanatory variables. The 95% 2-sided CIs were used to evaluate the significance of model variables., Results: Participant age and severity of MDD symptoms were found to be significantly related to home stay, with older (95% CI 0.161-0.325) and more severely affected individuals (95% CI 0.015-0.184) spending more time at home. The association between home stay and symptoms severity appeared to be stronger on weekdays (95% CI 0.023-0.178, median 0.098; home stay: 25th-75th percentiles 17.8-22.8, median 20.9 hours a day) than on weekends (95% CI -0.079 to 0.149, median 0.052; home stay: 25th-75th percentiles 19.7-23.5, median 22.3 hours a day). Furthermore, we found a significant modulation of home stay by occupational status, with employment reducing home stay (employed participants: 25th-75th percentiles 16.1-22.1, median 19.7 hours a day; unemployed participants: 25th-75th percentiles 20.4-23.5, median 22.6 hours a day)., Conclusions: Our findings suggest that home stay is associated with symptom severity in MDD and demonstrate the importance of accounting for confounding factors in future studies. In addition, they illustrate that passive sensing of individuals with depression is feasible and could provide clinically relevant information to monitor the course of illness in patients with MDD., (©Petroula Laiou, Dzmitry A Kaliukhovich, Amos A Folarin, Yatharth Ranjan, Zulqarnain Rashid, Pauline Conde, Callum Stewart, Shaoxiong Sun, Yuezhou Zhang, Faith Matcham, Alina Ivan, Grace Lavelle, Sara Siddi, Femke Lamers, Brenda WJH Penninx, Josep Maria Haro, Peter Annas, Nicholas Cummins, Srinivasan Vairavan, Nikolay V Manyakov, Vaibhav A Narayan, Richard JB Dobson, Matthew Hotopf, RADAR-CNS. Originally published in JMIR mHealth and uHealth (https://mhealth.jmir.org), 28.01.2022.)
- Published
- 2022
- Full Text
- View/download PDF
3. Human-Centered Design Strategies for Device Selection in mHealth Programs: Development of a Novel Framework and Case Study.
- Author
-
Polhemus AM, Novák J, Ferrao J, Simblett S, Radaelli M, Locatelli P, Matcham F, Kerz M, Weyer J, Burke P, Huang V, Dockendorf MF, Temesi G, Wykes T, Comi G, Myin-Germeys I, Folarin A, Dobson R, Manyakov NV, Narayan VA, and Hotopf M
- Subjects
- Health Personnel, Humans, Technology, Telemedicine
- Abstract
Background: Despite the increasing use of remote measurement technologies (RMT) such as wearables or biosensors in health care programs, challenges associated with selecting and implementing these technologies persist. Many health care programs that use RMT rely on commercially available, "off-the-shelf" devices to collect patient data. However, validation of these devices is sparse, the technology landscape is constantly changing, relative benefits between device options are often unclear, and research on patient and health care provider preferences is often lacking., Objective: To address these common challenges, we propose a novel device selection framework extrapolated from human-centered design principles, which are commonly used in de novo digital health product design. We then present a case study in which we used the framework to identify, test, select, and implement off-the-shelf devices for the Remote Assessment of Disease and Relapse-Central Nervous System (RADAR-CNS) consortium, a research program using RMT to study central nervous system disease progression., Methods: The RADAR-CNS device selection framework describes a human-centered approach to device selection for mobile health programs. The framework guides study designers through stakeholder engagement, technology landscaping, rapid proof of concept testing, and creative problem solving to develop device selection criteria and a robust implementation strategy. It also describes a method for considering compromises when tensions between stakeholder needs occur., Results: The framework successfully guided device selection for the RADAR-CNS study on relapse in multiple sclerosis. In the initial stage, we engaged a multidisciplinary team of patients, health care professionals, researchers, and technologists to identify our primary device-related goals. We desired regular home-based measurements of gait, balance, fatigue, heart rate, and sleep over the course of the study. However, devices and measurement methods had to be user friendly, secure, and able to produce high quality data. In the second stage, we iteratively refined our strategy and selected devices based on technological and regulatory constraints, user feedback, and research goals. At several points, we used this method to devise compromises that addressed conflicting stakeholder needs. We then implemented a feedback mechanism into the study to gather lessons about devices to improve future versions of the RADAR-CNS program., Conclusions: The RADAR device selection framework provides a structured yet flexible approach to device selection for health care programs and can be used to systematically approach complex decisions that require teams to consider patient experiences alongside scientific priorities and logistical, technical, or regulatory constraints., (©Ashley Marie Polhemus, Jan Novák, Jose Ferrao, Sara Simblett, Marta Radaelli, Patrick Locatelli, Faith Matcham, Maximilian Kerz, Janice Weyer, Patrick Burke, Vincy Huang, Marissa Fallon Dockendorf, Gergely Temesi, Til Wykes, Giancarlo Comi, Inez Myin-Germeys, Amos Folarin, Richard Dobson, Nikolay V Manyakov, Vaibhav A Narayan, Matthew Hotopf. Originally published in JMIR mHealth and uHealth (http://mhealth.jmir.org), 07.05.2020.)
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.