23 results on '"Biomolecular engineering"'
Search Results
2. Efficient proximal tubule-on-chip model from hiPSC-derived kidney organoids for functional analysis of renal transporters
- Author
-
Cheng Ma, Ramin Banan Sadeghian, Ryosuke Negoro, Kazuya Fujimoto, Toshikazu Araoka, Naoki Ishiguro, Minoru Takasato, and Ryuji Yokokawa
- Subjects
Biomolecular Engineering ,Molecular biology experimental approach ,Science - Abstract
Summary: Renal transporters play critical roles in predicting potential drug-drug interactions. However, current in vitro models often fail to adequately express these transporters, particularly solute carrier proteins, including organic anion transporters (OAT1/3), and organic cation transporter 2 (OCT2). Here, we developed a hiPSC-derived kidney organoids-based proximal tubule-on-chip (OPTC) model that emulates in vivo renal physiology to assess transporter function. Compared to chips based on immortalized cells, OPTC derived from the two most commonly used differentiation protocols exhibited significant improvement in expression level and polarity of OAT1/3 and OCT2. Hence, the OPTC demonstrates enhanced functionality in efflux and uptake assessments, and nephrotoxicity. Furthermore, these functionalities are diminished upon adding inhibitors during substrate-inhibitor interactions, which were closer to in vivo observations. Overall, these results support that OPTC can reliably assess the role of renal transporters in drug transport and nephrotoxicity, paving the way for personalized models to assess renal transport and disease modeling.
- Published
- 2024
- Full Text
- View/download PDF
3. Supramolecular DNA-based catalysis in organic solvents
- Author
-
Gurudas Chakraborty, Konstantin Balinin, Rafael del Villar-Guerra, Meike Emondts, Giuseppe Portale, Mark Loznik, Wiebe Jacob Niels Klement, Lifei Zheng, Tanja Weil, Jonathan B. Chaires, and Andreas Herrmann
- Subjects
Chemistry ,Catalysis ,Biomolecular engineering ,Science - Abstract
Summary: The distinct folding accompanied by its polymorphic character renders DNA G-quadruplexes promising biomolecular building blocks to construct novel DNA-based and supramolecular assemblies. However, the highly polar nature of DNA limits the use of G-quadruplexes to water as a solvent. In addition, the archetypical G-quadruplex fold needs to be stabilized by metal-cations, which is usually a potassium ion. Here, we show that a noncovalent PEGylation process enabled by electrostatic interactions allows the first metal-free G-quadruplexes in organic solvents. Strikingly, incorporation of an iron-containing porphyrin renders the self-assembled metal-free G-quadruplex catalytically active in organic solvents. Hence, these “supraG4zymes” enable DNA-based catalysis in organic media. The results will allow the broad utilization of DNA G-quadruplexes in nonaqueous environments.
- Published
- 2024
- Full Text
- View/download PDF
4. Targeting extracellular CIRP with an X-aptamer shows therapeutic potential in acute pancreatitis
- Author
-
Wuming Liu, Jianbin Bi, Yifan Ren, Huan Chen, Jia Zhang, Tao Wang, Mengzhou Wang, Lin Zhang, Junzhou Zhao, Zheng Wu, Yi Lv, Bing Liu, and Rongqian Wu
- Subjects
Biomolecular engineering ,Cell biology ,Molecular physiology ,Pathophysiology ,Science - Abstract
Summary: Severe acute pancreatitis (AP) is associated with a high mortality rate. Cold-inducible RNA binding protein (CIRP) can be released from cells in inflammatory conditions and extracellular CIRP acts as a damage-associated molecular pattern. This study aims to explore the role of CIRP in the pathogenesis of AP and evaluate the therapeutic potential of targeting extracellular CIRP with X-aptamers. Our results showed that serum CIRP concentrations were significantly increased in AP mice. Recombinant CIRP triggered mitochondrial injury and ER stress in pancreatic acinar cells. CIRP−/− mice suffered less severe pancreatic injury and inflammatory responses. Using a bead-based X-aptamer library, we identified an X-aptamer that specifically binds to CIRP (XA-CIRP). Structurally, XA-CIRP blocked the interaction between CIRP and TLR4. Functionally, it reduced CIRP-induced pancreatic acinar cell injury in vitro and L-arginine-induced pancreatic injury and inflammation in vivo. Thus, targeting extracellular CIRP with X-aptamers may be a promising strategy to treat AP.
- Published
- 2023
- Full Text
- View/download PDF
5. Mixed-surface polyamidoamine polymer variants retain nucleic acid-scavenger ability with reduced toxicity
- Author
-
Lyra B. Olson, Nicole I. Hunter, Rachel E. Rempel, Haixiang Yu, Diane M. Spencer, Cynthia Z. Sullenger, William S. Greene, Anastasia K. Varanko, Seyed A. Eghtesadi, Ashutosh Chilkoti, David S. Pisetsky, Jeffrey I. Everitt, and Bruce A. Sullenger
- Subjects
Immunology ,Biomolecular engineering ,Nanotechnology ,Science - Abstract
Summary: Nucleic acid-binding polymers can have anti-inflammatory properties and beneficial effects in animal models of infection, trauma, cancer, and autoimmunity. PAMAM G3, a polyamidoamine dendrimer, is fully cationic bearing 32 protonable surface amines. However, while PAMAM G3 treatment leads to improved outcomes for mice infected with influenza, at risk of cancer metastasis, or genetically prone to lupus, its administration can lead to serosal inflammation and elevation of biomarkers of liver and kidney damage. Variants with reduced density of cationic charge through the interspersal of hydroxyl groups were evaluated as potentially better-tolerated alternatives. Notably, the variant PAMAM G3 50:50, similar in size as PAMAM G3 but with half the charge, was not toxic in cell culture, less associated with weight loss or serosal inflammation after parenteral administration, and remained effective in reducing glomerulonephritis in lupus-prone mice. Identification of such modified scavengers should facilitate their development as safe and effective anti-inflammatory agents.
- Published
- 2022
- Full Text
- View/download PDF
6. Efficient proximal tubule-on-chip model from hiPSC-derived kidney organoids for functional analysis of renal transporters.
- Author
-
Ma C, Banan Sadeghian R, Negoro R, Fujimoto K, Araoka T, Ishiguro N, Takasato M, and Yokokawa R
- Abstract
Renal transporters play critical roles in predicting potential drug-drug interactions. However, current in vitro models often fail to adequately express these transporters, particularly solute carrier proteins, including organic anion transporters (OAT1/3), and organic cation transporter 2 (OCT2). Here, we developed a hiPSC-derived kidney organoids-based proximal tubule-on-chip (OPTC) model that emulates in vivo renal physiology to assess transporter function. Compared to chips based on immortalized cells, OPTC derived from the two most commonly used differentiation protocols exhibited significant improvement in expression level and polarity of OAT1/3 and OCT2. Hence, the OPTC demonstrates enhanced functionality in efflux and uptake assessments, and nephrotoxicity. Furthermore, these functionalities are diminished upon adding inhibitors during substrate-inhibitor interactions, which were closer to in vivo observations. Overall, these results support that OPTC can reliably assess the role of renal transporters in drug transport and nephrotoxicity, paving the way for personalized models to assess renal transport and disease modeling., Competing Interests: R.Y., C.M., R.B.S., K.F., T.A., M.T., and R.N. are inventors on JP patent application no. 2024–73489 “Construction of proximal tubules micro-physiological system”., (© 2024 The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
7. Next generation Fc scaffold for multispecific antibodies
- Author
-
Bram Estes, Athena Sudom, Danyang Gong, Douglas A. Whittington, Vivian Li, Christopher Mohr, Danqing Li, Timothy P. Riley, Stone D.-H. Shi, Jun Zhang, Fernando Garces, and Zhulun Wang
- Subjects
Biochemistry ,Bioengineering ,Biomolecular engineering ,Structural biology ,Science - Abstract
Summary: Bispecific antibodies (Bispecifics) demonstrate exceptional clinical potential to address some of the most complex diseases. However, Bispecific production in a single cell often requires the correct pairing of multiple polypeptide chains for desired assembly. This is a considerable hurdle that hinders the development of many immunoglobulin G (IgG)-like bispecific formats. Our approach focuses on the rational engineering of charged residues to facilitate the chain pairing of distinct heavy chains (HC). Here, we deploy structure-guided protein design to engineer charge pair mutations (CPMs) placed in the CH3-CH3′ interface of the fragment crystallizable (Fc) region of an antibody (Ab) to correctly steer heavy chain pairing. When used in combination with our stable effector functionless 2 (SEFL2.2) technology, we observed high pairing efficiency without significant losses in expression yields. Furthermore, we investigate the relationship between CPMs and the sequence diversity in the parental antibodies, proposing a rational strategy to deploy these engineering technologies.
- Published
- 2021
- Full Text
- View/download PDF
8. Characteristic ERK1/2 signaling dynamics distinguishes necroptosis from apoptosis
- Author
-
François Sipieter, Benjamin Cappe, Aymeric Leray, Elke De Schutter, Jolien Bridelance, Paco Hulpiau, Guy Van Camp, Wim Declercq, Laurent Héliot, Pierre Vincent, Peter Vandenabeele, and Franck B. Riquet
- Subjects
Biological sciences ,Biomolecular engineering ,Cell biology ,Science - Abstract
Summary: ERK1/2 involvement in cell death remains unclear, although many studies have demonstrated the importance of ERK1/2 dynamics in determining cellular responses. To untangle how ERK1/2 contributes to two cell death programs, we investigated ERK1/2 signaling dynamics during hFasL-induced apoptosis and TNF-induced necroptosis in L929 cells. We observed that ERK1/2 inhibition sensitizes cells to apoptosis while delaying necroptosis. By monitoring ERK1/2 activity by live-cell imaging using an improved ERK1/2 biosensor (EKAR4.0), we reported differential ERK1/2 signaling dynamics between cell survival, apoptosis, and necroptosis. We also decrypted a temporally shifted amplitude- and frequency-modulated (AM/FM) ERK1/2 activity profile in necroptosis versus apoptosis. ERK1/2 inhibition, which disrupted ERK1/2 signaling dynamics, prevented TNF and IL-6 gene expression increase during TNF-induced necroptosis. Using an inducible cell line for activated MLKL, the final executioner of necroptosis, we showed ERK1/2 and its distinctive necroptotic ERK1/2 activity dynamics to be positioned downstream of MLKL.
- Published
- 2021
- Full Text
- View/download PDF
9. In situ observation of mitochondrial biogenesis as the early event of apoptosis
- Author
-
Chang-Sheng Shao, Xiu-Hong Zhou, Yu-Hui Miao, Peng Wang, Qian-Qian Zhang, and Qing Huang
- Subjects
Biochemistry methods ,Biomolecular engineering ,Cell biology ,Science - Abstract
Summary: Mitochondrial biogenesis is a cell response to external stimuli which is generally believed to suppress apoptosis. However, during the process of apoptosis, whether mitochondrial biogenesis occurs in the early stage of the apoptotic cells remains unclear. To address this question, we constructed the COX8-EGFP-ACTIN-mCherry HeLa cells with recombinant fluorescent proteins respectively tagged on the nucleus and mitochondria and monitored the mitochondrial changes in the living cells exposed to gamma-ray radiation. Besides in situ detection of mitochondrial fluorescence changes, we also examined the cell viability, nuclear DNA damage, reactive oxygen species (ROS), mitochondrial superoxide, citrate synthase activity, ATP, cytoplasmic and mitochondrial calcium, mitochondrial mass, mitochondrial morphology, and protein expression related to mitochondrial biogenesis, as well as the apoptosis biomarkers. As a result, we confirmed that significant mitochondrial biogenesis took place preceding the radiation-induced apoptosis, and it was closely correlated with the apoptotic cells at late stage. The involved mechanism was also discussed.
- Published
- 2021
- Full Text
- View/download PDF
10. Prion-derived tetrapeptide stabilizes thermolabile insulin via conformational trapping
- Author
-
Meghomukta Mukherjee, Debajyoti Das, Jit Sarkar, Nilanjan Banerjee, Jagannath Jana, Jyotsna Bhat, Jithender Reddy G, Jagadeesh Bharatam, Samit Chattopadhyay, Subhrangsu Chatterjee, and Partha Chakrabarti
- Subjects
Medical biochemistry ,Molecular physiology ,Biomolecular engineering ,Structural biology ,Science - Abstract
Summary: Unfolding followed by fibrillation of insulin even in the presence of various excipients grappled with restricted clinical application. Thus, there is an unmet need for better thermostable, nontoxic molecules to preserve bioactive insulin under varying physiochemical perturbations. In search of cross-amyloid inhibitors, prion-derived tetrapeptide library screening reveals a consensus V(X)YR motif for potential inhibition of insulin fibrillation. A tetrapeptide VYYR, isosequential to the β2-strand of prion, effectively suppresses heat- and storage-induced insulin fibrillation and maintains insulin in a thermostable bioactive form conferring adequate glycemic control in mouse models of diabetes and impedes insulin amyloidoma formation. Besides elucidating the critical insulin-IS1 interaction (R4 of IS1 to the N24 insulin B-chain) by nuclear magnetic resonance spectroscopy, we further demonstrated non-canonical dimer-mediated conformational trapping mechanism for insulin stabilization. In this study, structural characterization and preclinical validation introduce a class of tetrapeptide toward developing thermostable therapeutically relevant insulin formulations.
- Published
- 2021
- Full Text
- View/download PDF
11. Single-Chain Lanthanide Luminescence Biosensors for Cell-Based Imaging and Screening of Protein-Protein Interactions
- Author
-
Ting Chen, Ha Pham, Ali Mohamadi, and Lawrence W. Miller
- Subjects
Sensor ,Molecular Spectroscopy Techniques ,Molecular Interaction ,Biomolecular Engineering ,Science - Abstract
Summary: Lanthanide-based, Förster resonance energy transfer (LRET) biosensors enabled sensitive, time-gated luminescence (TGL) imaging or multiwell plate analysis of protein-protein interactions (PPIs) in living cells. We prepared stable cell lines that expressed polypeptides composed of an alpha helical linker flanked by a Tb(III) complex-binding domain, GFP, and two interacting domains at each terminus. The PPIs examined included those between FKBP12 and the rapamycin-binding domain of m-Tor (FRB) and between p53 (1–92) and HDM2 (1–128). TGL microscopy revealed dramatic differences (>500%) in donor- or acceptor-denominated, Tb(III)-to-GFP LRET ratios between open (unbound) and closed (bound) states of the biosensors. We observed much larger signal changes (>2,500%) and Z′-factors of 0.5 or more when we grew cells in 96- or 384-well plates and analyzed PPI changes using a TGL plate reader. The modular design and exceptional dynamic range of lanthanide-based LRET biosensors will facilitate versatile imaging and cell-based screening of PPIs.
- Published
- 2020
- Full Text
- View/download PDF
12. Supramolecular DNA-based catalysis in organic solvents.
- Author
-
Chakraborty G, Balinin K, Villar-Guerra RD, Emondts M, Portale G, Loznik M, Niels Klement WJ, Zheng L, Weil T, Chaires JB, and Herrmann A
- Abstract
The distinct folding accompanied by its polymorphic character renders DNA G-quadruplexes promising biomolecular building blocks to construct novel DNA-based and supramolecular assemblies. However, the highly polar nature of DNA limits the use of G-quadruplexes to water as a solvent. In addition, the archetypical G-quadruplex fold needs to be stabilized by metal-cations, which is usually a potassium ion. Here, we show that a noncovalent PEGylation process enabled by electrostatic interactions allows the first metal-free G-quadruplexes in organic solvents. Strikingly, incorporation of an iron-containing porphyrin renders the self-assembled metal-free G-quadruplex catalytically active in organic solvents. Hence, these "supraG4zymes" enable DNA-based catalysis in organic media. The results will allow the broad utilization of DNA G-quadruplexes in nonaqueous environments., Competing Interests: The authors declare no competing interests., (© 2024 The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
13. Next generation Fc scaffold for multispecific antibodies
- Author
-
Vivian S. W. Li, Fernando Garces, Danqing Li, Stone D.-H. Shi, Jun Zhang, Danyang Gong, Bram Estes, Douglas A. Whittington, Zhulun Wang, Athena Sudom, Christopher Mohr, and Timothy P. Riley
- Subjects
Multidisciplinary ,biology ,Effector ,Chemistry ,Science ,Protein design ,Sequence (biology) ,Biomolecular engineering ,Bioengineering ,Computational biology ,Biochemistry ,Immunoglobulin G ,Article ,Structural biology ,Pairing ,biology.protein ,Antibody - Abstract
Summary Bispecific antibodies (Bispecifics) demonstrate exceptional clinical potential to address some of the most complex diseases. However, Bispecific production in a single cell often requires the correct pairing of multiple polypeptide chains for desired assembly. This is a considerable hurdle that hinders the development of many immunoglobulin G (IgG)-like bispecific formats. Our approach focuses on the rational engineering of charged residues to facilitate the chain pairing of distinct heavy chains (HC). Here, we deploy structure-guided protein design to engineer charge pair mutations (CPMs) placed in the CH3-CH3′ interface of the fragment crystallizable (Fc) region of an antibody (Ab) to correctly steer heavy chain pairing. When used in combination with our stable effector functionless 2 (SEFL2.2) technology, we observed high pairing efficiency without significant losses in expression yields. Furthermore, we investigate the relationship between CPMs and the sequence diversity in the parental antibodies, proposing a rational strategy to deploy these engineering technologies., Graphical abstract, Highlights • Crystal structures unveil molecular basis of SEFL2.2 and CPM technologies • Next gen structure-guided design of CPMs to steer HC-HC pairing • Top CPMs show high pairing efficiency and optimal expression and stability • Balancing CPM charge distribution minimizes impact of sequence diversity, Biochemistry; Bioengineering; Biomolecular engineering; Structural biology
- Published
- 2021
14. Targeting extracellular CIRP with an X-aptamer shows therapeutic potential in acute pancreatitis.
- Author
-
Liu W, Bi J, Ren Y, Chen H, Zhang J, Wang T, Wang M, Zhang L, Zhao J, Wu Z, Lv Y, Liu B, and Wu R
- Abstract
Severe acute pancreatitis (AP) is associated with a high mortality rate. Cold-inducible RNA binding protein (CIRP) can be released from cells in inflammatory conditions and extracellular CIRP acts as a damage-associated molecular pattern. This study aims to explore the role of CIRP in the pathogenesis of AP and evaluate the therapeutic potential of targeting extracellular CIRP with X-aptamers. Our results showed that serum CIRP concentrations were significantly increased in AP mice. Recombinant CIRP triggered mitochondrial injury and ER stress in pancreatic acinar cells. CIRP
-/- mice suffered less severe pancreatic injury and inflammatory responses. Using a bead-based X-aptamer library, we identified an X-aptamer that specifically binds to CIRP (XA-CIRP). Structurally, XA-CIRP blocked the interaction between CIRP and TLR4. Functionally, it reduced CIRP-induced pancreatic acinar cell injury in vitro and L-arginine-induced pancreatic injury and inflammation in vivo . Thus, targeting extracellular CIRP with X-aptamers may be a promising strategy to treat AP., Competing Interests: The authors reported no conflict of interest in this study., (© 2023 The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
15. In situ observation of mitochondrial biogenesis as the early event of apoptosis
- Author
-
Xiu-Hong Zhou, Chang-Sheng Shao, Qian-Qian Zhang, Yu-Hui Miao, Peng Wang, and Qing Huang
- Subjects
chemistry.chemical_classification ,Mitochondrial DNA ,Reactive oxygen species ,Cell biology ,Multidisciplinary ,Science ,Biochemistry methods ,Mitochondrion ,Biology ,Article ,Nuclear DNA ,Biomolecular engineering ,Mitochondrial biogenesis ,chemistry ,Cytoplasm ,Transcription (biology) ,Apoptosis ,biology.protein ,Citrate synthase ,Viability assay - Abstract
Summary Mitochondrial biogenesis is a cell response to external stimuli which is generally believed to suppress apoptosis. However, during the process of apoptosis, whether mitochondrial biogenesis occurs in the early stage of the apoptotic cells remains unclear. To address this question, we constructed the COX8-EGFP-ACTIN-mCherry HeLa cells with recombinant fluorescent proteins respectively tagged on the nucleus and mitochondria and monitored the mitochondrial changes in the living cells exposed to gamma-ray radiation. Besides in situ detection of mitochondrial fluorescence changes, we also examined the cell viability, nuclear DNA damage, reactive oxygen species (ROS), mitochondrial superoxide, citrate synthase activity, ATP, cytoplasmic and mitochondrial calcium, mitochondrial mass, mitochondrial morphology, and protein expression related to mitochondrial biogenesis, as well as the apoptosis biomarkers. As a result, we confirmed that significant mitochondrial biogenesis took place preceding the radiation-induced apoptosis, and it was closely correlated with the apoptotic cells at late stage. The involved mechanism was also discussed., Graphical abstract, Highlights • Dual fluorescence approach was used for in situ observation of living cell processes • Radiation-induced effects of mitochondrial biogenesis and apoptosis were observed • Relationship between mitochondrial biogenesis and apoptosis was revisited • Assessing early mitochondrial biogenesis is critical for predicting later fate of cells, Biochemistry methods; Biomolecular engineering; Cell biology
- Published
- 2021
16. Single-Chain Lanthanide Luminescence Biosensors for Cell-Based Imaging and Screening of Protein-Protein Interactions
- Author
-
Ali Mohamadi, Ha Pham, Ting Chen, and Lawrence W. Miller
- Subjects
0301 basic medicine ,Lanthanide ,Biomolecular Engineering ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Article ,Green fluorescent protein ,Protein–protein interaction ,03 medical and health sciences ,lcsh:Science ,Molecular Spectroscopy Techniques ,030304 developmental biology ,Sensor ,0303 health sciences ,Multidisciplinary ,Molecular Interaction ,Drug discovery ,Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,3. Good health ,030104 developmental biology ,Förster resonance energy transfer ,Biophysics ,lcsh:Q ,0210 nano-technology ,Luminescence ,Biosensor ,Linker ,Plate reader ,Binding domain - Abstract
Summary Lanthanide-based, Förster resonance energy transfer (LRET) biosensors enabled sensitive, time-gated luminescence (TGL) imaging or multiwell plate analysis of protein-protein interactions (PPIs) in living cells. We prepared stable cell lines that expressed polypeptides composed of an alpha helical linker flanked by a Tb(III) complex-binding domain, GFP, and two interacting domains at each terminus. The PPIs examined included those between FKBP12 and the rapamycin-binding domain of m-Tor (FRB) and between p53 (1–92) and HDM2 (1–128). TGL microscopy revealed dramatic differences (>500%) in donor- or acceptor-denominated, Tb(III)-to-GFP LRET ratios between open (unbound) and closed (bound) states of the biosensors. We observed much larger signal changes (>2,500%) and Z′-factors of 0.5 or more when we grew cells in 96- or 384-well plates and analyzed PPI changes using a TGL plate reader. The modular design and exceptional dynamic range of lanthanide-based LRET biosensors will facilitate versatile imaging and cell-based screening of PPIs., Graphical Abstract, Highlights • Non-invasive, microscopic imaging or screening of protein-protein interactions • Intracellular assembly of sensor polypeptides with luminescent Tb(III) complexes • High dynamic range with time-gated detection of Tb(III)-to-GFP sensitized emission, Sensor; Molecular Spectroscopy Techniques; Molecular Interaction; Biomolecular Engineering
- Published
- 2020
17. Mixed-surface polyamidoamine polymer variants retain nucleic acid-scavenger ability with reduced toxicity.
- Author
-
Olson LB, Hunter NI, Rempel RE, Yu H, Spencer DM, Sullenger CZ, Greene WS, Varanko AK, Eghtesadi SA, Chilkoti A, Pisetsky DS, Everitt JI, and Sullenger BA
- Abstract
Nucleic acid-binding polymers can have anti-inflammatory properties and beneficial effects in animal models of infection, trauma, cancer, and autoimmunity. PAMAM G3, a polyamidoamine dendrimer, is fully cationic bearing 32 protonable surface amines. However, while PAMAM G3 treatment leads to improved outcomes for mice infected with influenza, at risk of cancer metastasis, or genetically prone to lupus, its administration can lead to serosal inflammation and elevation of biomarkers of liver and kidney damage. Variants with reduced density of cationic charge through the interspersal of hydroxyl groups were evaluated as potentially better-tolerated alternatives. Notably, the variant PAMAM G3 50:50, similar in size as PAMAM G3 but with half the charge, was not toxic in cell culture, less associated with weight loss or serosal inflammation after parenteral administration, and remained effective in reducing glomerulonephritis in lupus-prone mice. Identification of such modified scavengers should facilitate their development as safe and effective anti-inflammatory agents., Competing Interests: Duke University has applied for patents on the strategy to reduce inflammation via nucleic acid scavengers. Lyra Olson, Nicole Hunter, Rachel Rempel, and Bruce Sullenger are listed as inventors on such patents., (© 2022 The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
18. Characteristic ERK1/2 signaling dynamics distinguishes necroptosis from apoptosis
- Author
-
Peter Vandenabeele, Wim Declercq, Jolien Bridelance, Laurent Héliot, Pierre Vincent, Franck B. Riquet, François Sipieter, Aymeric Leray, Elke De Schutter, Benjamin Cappe, Guy Van Camp, Paco Hulpiau, Universiteit Gent = Ghent University [Belgium] (UGENT), VIB-UGent Center for Inflammation Research [Gand, Belgique] (IRC), VIB [Belgium], Université de Lille, Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (LICB), Université de Bourgogne (UB)-Université de Technologie de Belfort-Montbeliard (UTBM)-Centre National de la Recherche Scientifique (CNRS), University of Antwerp (UA), VIB Center for Inflammation Research [Ghent, Belgium], Antwerp University Hospital [Edegem] (UZA), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Adaptation Biologique et Vieillissement = Biological Adaptation and Ageing (B2A), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Paris Seine (IBPS), Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Universiteit Gent = Ghent University (UGENT), Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), Université de Technologie de Belfort-Montbeliard (UTBM)-Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Riquet, Franck, Université de Bourgogne (UB), and Leray, Aymeric
- Subjects
Cell biology ,Programmed cell death ,Science ,[SDV]Life Sciences [q-bio] ,Necroptosis ,[SDV.BBM.BP] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,PROTEIN ,MECHANISMS ,ESCRT ,ACTIVATION ,03 medical and health sciences ,0302 clinical medicine ,INFLAMMATION ,Gene expression ,Medicine and Health Sciences ,KINASE ,Biology ,030304 developmental biology ,0303 health sciences ,Multidisciplinary ,IDENTIFICATION ,Chemistry ,NECROSIS ,Dynamics (mechanics) ,Biology and Life Sciences ,Erk1 2 signaling ,[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,[SDV] Life Sciences [q-bio] ,Biological sciences ,Biomolecular engineering ,CELL-DEATH ,Apoptosis ,Cell culture ,030220 oncology & carcinogenesis ,Tumor necrosis factor alpha ,BIOSENSORS ,Human medicine - Abstract
International audience; ERK1/2 involvement in cell death remains unclear, although many studies have demonstrated the importance of ERK1/2 dynamics in determining cellular re- sponses. To untangle how ERK1/2 contributes to two cell death programs, we investigated ERK1/2 signaling dynamics during hFasL-induced apoptosis and TNF-induced necroptosis in L929 cells. We observed that ERK1/2 inhibition sensi- tizes cells to apoptosis while delaying necroptosis. By monitoring ERK1/2 activity by live-cell imaging using an improved ERK1/2 biosensor (EKAR4.0), we reported differential ERK1/2 signaling dynamics between cell survival, apoptosis, and nec- roptosis. We also decrypted a temporally shifted amplitude- and frequency-modu- lated (AM/FM) ERK1/2 activity profile in necroptosis versus apoptosis. ERK1/2 inhibition, which disrupted ERK1/2 signaling dynamics, prevented TNF and IL-6 gene expression increase during TNF-induced necroptosis. Using an inducible cell line for activated MLKL, the final executioner of necroptosis, we showed ERK1/2 and its distinctive necroptotic ERK1/2 activity dynamics to be positioned downstream of MLKL.
- Published
- 2021
- Full Text
- View/download PDF
19. Next generation Fc scaffold for multispecific antibodies.
- Author
-
Estes B, Sudom A, Gong D, Whittington DA, Li V, Mohr C, Li D, Riley TP, Shi SD, Zhang J, Garces F, and Wang Z
- Abstract
Bispecific antibodies (Bispecifics) demonstrate exceptional clinical potential to address some of the most complex diseases. However, Bispecific production in a single cell often requires the correct pairing of multiple polypeptide chains for desired assembly. This is a considerable hurdle that hinders the development of many immunoglobulin G (IgG)-like bispecific formats. Our approach focuses on the rational engineering of charged residues to facilitate the chain pairing of distinct heavy chains (HC). Here, we deploy structure-guided protein design to engineer charge pair mutations (CPMs) placed in the CH3-CH3' interface of the fragment crystallizable (Fc) region of an antibody (Ab) to correctly steer heavy chain pairing. When used in combination with our stable effector functionless 2 (SEFL2.2) technology, we observed high pairing efficiency without significant losses in expression yields. Furthermore, we investigate the relationship between CPMs and the sequence diversity in the parental antibodies, proposing a rational strategy to deploy these engineering technologies., Competing Interests: The authors declare no competing interests., (© 2021 The Authors.)
- Published
- 2021
- Full Text
- View/download PDF
20. Characteristic ERK1/2 signaling dynamics distinguishes necroptosis from apoptosis.
- Author
-
Sipieter F, Cappe B, Leray A, De Schutter E, Bridelance J, Hulpiau P, Van Camp G, Declercq W, Héliot L, Vincent P, Vandenabeele P, and Riquet FB
- Abstract
ERK1/2 involvement in cell death remains unclear, although many studies have demonstrated the importance of ERK1/2 dynamics in determining cellular responses. To untangle how ERK1/2 contributes to two cell death programs, we investigated ERK1/2 signaling dynamics during hFasL-induced apoptosis and TNF-induced necroptosis in L929 cells. We observed that ERK1/2 inhibition sensitizes cells to apoptosis while delaying necroptosis. By monitoring ERK1/2 activity by live-cell imaging using an improved ERK1/2 biosensor (EKAR4.0), we reported differential ERK1/2 signaling dynamics between cell survival, apoptosis, and necroptosis. We also decrypted a temporally shifted amplitude- and frequency-modulated (AM/FM) ERK1/2 activity profile in necroptosis versus apoptosis. ERK1/2 inhibition, which disrupted ERK1/2 signaling dynamics, prevented TNF and IL-6 gene expression increase during TNF-induced necroptosis. Using an inducible cell line for activated MLKL, the final executioner of necroptosis, we showed ERK1/2 and its distinctive necroptotic ERK1/2 activity dynamics to be positioned downstream of MLKL., Competing Interests: The authors declare no conflict of interest., (© 2021 The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
21. In situ observation of mitochondrial biogenesis as the early event of apoptosis.
- Author
-
Shao CS, Zhou XH, Miao YH, Wang P, Zhang QQ, and Huang Q
- Abstract
Mitochondrial biogenesis is a cell response to external stimuli which is generally believed to suppress apoptosis. However, during the process of apoptosis, whether mitochondrial biogenesis occurs in the early stage of the apoptotic cells remains unclear. To address this question, we constructed the COX8-EGFP-ACTIN-mCherry HeLa cells with recombinant fluorescent proteins respectively tagged on the nucleus and mitochondria and monitored the mitochondrial changes in the living cells exposed to gamma-ray radiation. Besides in situ detection of mitochondrial fluorescence changes, we also examined the cell viability, nuclear DNA damage, reactive oxygen species (ROS), mitochondrial superoxide, citrate synthase activity, ATP, cytoplasmic and mitochondrial calcium, mitochondrial mass, mitochondrial morphology, and protein expression related to mitochondrial biogenesis, as well as the apoptosis biomarkers. As a result, we confirmed that significant mitochondrial biogenesis took place preceding the radiation-induced apoptosis, and it was closely correlated with the apoptotic cells at late stage. The involved mechanism was also discussed., Competing Interests: The authors declare that they have no competing interests., (© 2021 The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
22. Prion-derived tetrapeptide stabilizes thermolabile insulin via conformational trapping.
- Author
-
Mukherjee M, Das D, Sarkar J, Banerjee N, Jana J, Bhat J, Reddy G J, Bharatam J, Chattopadhyay S, Chatterjee S, and Chakrabarti P
- Abstract
Unfolding followed by fibrillation of insulin even in the presence of various excipients grappled with restricted clinical application. Thus, there is an unmet need for better thermostable, nontoxic molecules to preserve bioactive insulin under varying physiochemical perturbations. In search of cross-amyloid inhibitors, prion-derived tetrapeptide library screening reveals a consensus V(X)YR motif for potential inhibition of insulin fibrillation. A tetrapeptide VYYR, isosequential to the β2-strand of prion, effectively suppresses heat- and storage-induced insulin fibrillation and maintains insulin in a thermostable bioactive form conferring adequate glycemic control in mouse models of diabetes and impedes insulin amyloidoma formation. Besides elucidating the critical insulin-IS1 interaction (R4 of IS1 to the N24 insulin B-chain) by nuclear magnetic resonance spectroscopy, we further demonstrated non-canonical dimer-mediated conformational trapping mechanism for insulin stabilization. In this study, structural characterization and preclinical validation introduce a class of tetrapeptide toward developing thermostable therapeutically relevant insulin formulations., Competing Interests: There is no conflict of interest., (© 2021 The Authors.)
- Published
- 2021
- Full Text
- View/download PDF
23. Single-Chain Lanthanide Luminescence Biosensors for Cell-Based Imaging and Screening of Protein-Protein Interactions.
- Author
-
Chen T, Pham H, Mohamadi A, and Miller LW
- Abstract
Lanthanide-based, Förster resonance energy transfer (LRET) biosensors enabled sensitive, time-gated luminescence (TGL) imaging or multiwell plate analysis of protein-protein interactions (PPIs) in living cells. We prepared stable cell lines that expressed polypeptides composed of an alpha helical linker flanked by a Tb(III) complex-binding domain, GFP, and two interacting domains at each terminus. The PPIs examined included those between FKBP12 and the rapamycin-binding domain of m-Tor (FRB) and between p53 (1-92) and HDM2 (1-128). TGL microscopy revealed dramatic differences (>500%) in donor- or acceptor-denominated, Tb(III)-to-GFP LRET ratios between open (unbound) and closed (bound) states of the biosensors. We observed much larger signal changes (>2,500%) and Z'-factors of 0.5 or more when we grew cells in 96- or 384-well plates and analyzed PPI changes using a TGL plate reader. The modular design and exceptional dynamic range of lanthanide-based LRET biosensors will facilitate versatile imaging and cell-based screening of PPIs., Competing Interests: The authors declare no competing interests., (© 2020 The Authors.)
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.