1. Histopathological and Biomechanical Survey on Effect of CoQ10 in Combination with Chitosan Conduit on Deep Digital Flexor Tendon Healing in Rabbits
- Author
-
Saba Moghadam and Amir Amniattalab
- Subjects
tendon healing ,chitosan conduit ,coq10 ,Veterinary medicine ,SF600-1100 - Abstract
Objective- Chitosan is of great interest in regenerative medicine because of its plentiful properties, like biocompatibility, biodegradability and non-toxicity. The objective of the present study was histopathological and biomechanical survey on effect of CoQ10 in combination with chitosan conduit on deep digital flexor tendon (DDFT) healing in rabbits. Design- Experimental Study Animals- Eighteen healthy male white New Zealand rabbits Procedures- The animals were randomized into three groups of 6 animals each. In Controlgroup the DDF tenotomy was performed and the stumps were sutured. In Chitosan group the DDF tenotomy was performed and the stumps were sutured and chitosan conduit was wrapped around the damaged area. In Chit-CoQ10 group the procedure was the same as Chitosan group as well as local administration of 100 µL CoQ10 (100 µg/rabbit) into the Chitosan conduit. The histopathological assessments including inflammation, angiogenesis and collagen fibers arrangement, and biomechanical assessments were performed after 8 weeks. Results- Histopathological observations showed that the conduit was absorbed and adhesion around the tendon was deceased in Chitosan and Chit-CoQ10 groups. The biomechanical parameters showed significant improvement in Chit-CoQ10 group (p < 0.05). There were no noticeable signs of infection and tissue reaction in the granulation tissue in Chit-CoQ10 group compared to other groups (p < 0.05). Conclusion and Clinical Relevance- Local administration of CoQ10 in combination with chitosan conduit could accelerate deep digital flexor tendon healing via decrease in adhesion around the tendon with no signs of excessive tissue reaction or infection in rabbits.
- Published
- 2020
- Full Text
- View/download PDF