Ludovic Métivier, Jean Virieux, Romain Brossier, Edouard Oudet, Quentin Mérigot, Equations aux Dérivées Partielles (EDP ), Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut des Sciences de la Terre (ISTerre), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales (MOKAPLAN), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Calcul des Variations, Géométrie, Image (CVGI ), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Inria de Paris
International audience; The use of optimal transport distance has recently yielded significant progress in image processing for pattern recognition, shape identification, and histograms matching. In this study, the use of this distance is investigated for a seismic tomography problem exploiting the complete waveform; the full waveform inversion. In its conventional formulation, this high resolution seismic imaging method is based on the minimization of the L2 distance between predicted and observed data. Application of this method is generally hampered by the local minima of the associated L2 misfit function, which correspond to velocity models matching the data up to one or several phase shifts. Conversely, the optimal transport distance appears as a more suitable tool to compare the misfit between oscillatory signals, for its ability to detect shifted patterns. However, its application to the full waveform inversion is not straightforward, as the mass conservation between the compared data cannot be guaranteed, a crucial assumption for optimal transport. In this study, the use of a distance based on the Kantorovich–Rubinstein norm is introduced to overcome this difficulty. Its mathematical link with the optimal transport distance is made clear. An efficient numerical strategy for its computation, based on a proximal splitting technique, is introduced. We demonstrate that each iteration of the corresponding algorithm requires solving the Poisson equation, for which fast solvers can be used, relying either on the fast Fourier transform or on multigrid techniques. The development of this numerical method make possible applications to industrial scale data, involving tenths of millions of discrete unknowns. The results we obtain on such large scale synthetic data illustrate the potentialities of the optimal transport for seismic imaging. Starting from crude initial velocity models, optimal transport based inversion yields significantly better velocity reconstructions than those based on the L2 distance, in 2D and 3D contexts.