1. Heterogeneity of Phase II Enzyme Ligands on Controlling the Progression of Human Gastric Cancer Organoids as Stem Cell Therapy Model.
- Author
-
Wu DC, Ku CC, Pan JB, Wuputra K, Yang YH, Liu CJ, Liu YC, Kato K, Saito S, Lin YC, Chong IW, Hsiao M, Hu HM, Kuo CH, Kuo KK, Lin CS, and Yokoyama KK
- Subjects
- Humans, Apoptosis, Cell- and Tissue-Based Therapy, Isothiocyanates pharmacology, Isothiocyanates metabolism, NF-E2-Related Factor 2 metabolism, Organoids metabolism, Oxidative Stress, Reactive Oxygen Species metabolism, Sulfoxides pharmacology, Antioxidants pharmacology, Stomach Neoplasms drug therapy, Stomach Neoplasms metabolism
- Abstract
Gastric cancer (GC) organoids are frequently used to examine cell proliferation and death as well as cancer development. Invasion/migration assay, xenotransplantation, and reactive oxygen species (ROS) production were used to examine the effects of antioxidant drugs, including perillaldehyde (PEA), cinnamaldehyde (CA), and sulforaphane (SFN), on GC. PEA and CA repressed the proliferation of human GC organoids, whereas SFN enhanced it. Caspase 3 activities were also repressed on treatment with PEA and CA. Furthermore, the tumor formation and invasive activities were repressed on treatment with PEA and CA, whereas they were enhanced on treatment with SFN. These results in three-dimensional (3D)-GC organoids showed the different cancer development of phase II enzyme ligands in 2D-GC cells. ROS production and the expression of TP53, nuclear factor erythroid 2-related factor (NRF2), and Jun dimerization protein 2 were also downregulated on treatment with PEA and CA, but not SFN. NRF2 knockdown reversed the effects of these antioxidant drugs on the invasive activities of the 3D-GC organoids. Moreover, ROS production was also inhibited by treatment with PEA and CA, but not SFN. Thus, NRF2 plays a key role in the differential effects of these antioxidant drugs on cancer progression in 3D-GC organoids. PEA and CA can potentially be new antitumorigenic therapeutics for GC.
- Published
- 2023
- Full Text
- View/download PDF