7 results on '"Hu SJ"'
Search Results
2. Review of the Narrow-Banded Hawkmoth, Neogurelca montana (Rothschild & Jordan, 1915) (Lepidoptera: Sphingidae) in China, with Morphological and Phylogenetic Analysis.
- Author
-
Xu ZB, He JB, Yang N, Kitching IJ, and Hu SJ
- Abstract
Neogurelca montana (Rothschild & Jordan, 1915) is a species of the genus Neogurelca Hogenes & Treadaway, 1993, that was previously known from Sichuan, Yunnan, and Tibet, China. Recently, however, this species was also found in Beijing and Hebei. These populations differ from those in southwest China in body colour and the shape of the yellow patches of the hindwing-a paler body colour and triangular patches in the former and darker body colour and fan-like patches in the latter. Wing morphology, male and female genitalia, and molecular evidence (DNA barcodes) were analysed for the different localities of this species and three other Neogurelca species- N. hyas , N. himachala , and N. masuriensis . Our molecular data support the Beijing population of montana as a valid subspecies, which we describe as N. montana taihangensis ssp. nov . Wing and genital morphology confirm the molecular conclusions. We also collected larvae of the new subspecies in the Beijing suburbs and describe its life history and larval hosts and compare them with those of N. himachala .
- Published
- 2023
- Full Text
- View/download PDF
3. Species Richness of Papilionidae Butterflies (Lepidoptera: Papilionoidea) in the Hengduan Mountains and Its Future Shifts under Climate Change.
- Author
-
Yu XT, Yang FL, Da W, Li YC, Xi HM, Cotton AM, Zhang HH, Duan K, Xu ZB, Gong ZX, Wang WL, and Hu SJ
- Abstract
The family of Papilionidae (Lepidoptera: Papilionoidea) is a group of butterflies with high ecological and conservation value. The Hengduan Mountains (HMDs) in Southwest China is an important diversity centre for these butterflies. However, the spatial distribution pattern and the climate vulnerability of Papilionidae butterflies in the HDMs remain unknown to date. The lack of such knowledge has already become an obstacle in formulating effective butterfly conservation strategies. The present research compiled a 59-species dataset with 1938 occurrence points. The Maxent model was applied to analyse the spatial pattern of species richness in subfamilies Parnassiinae and Papilioninae, as well as to predict the response under the influence of climate change. The spatial pattern of both subfamilies in the HDMs has obvious elevation prevalence, with Parnassiinae concentrated in the subalpine to alpine areas (2500-5500 m) in western Sichuan, northwestern Yunnan and eastern Tibet, while Papilioninae is concentrated in the low- to medium-elevation areas (1500-3500 m) in the river valleys of western Yunnan and western Sichuan. Under the influence of climate change, both subfamilies would exhibit northward and upward range shifts. The majority of Parnassiinae species would experience drastic habitat contraction, resulting in lower species richness across the HDMs. In contrast, most Papilioninae species would experience habitat expansion, and the species richness would also increase significantly. The findings of this research should provide new insights and a clue for butterfly diversity and climatic vulnerability in southwestern China. Future conservation efforts should be focused on species with habitat contraction, narrow-ranged distribution and endemicity with both in situ and ex situ measures, especially in protected areas. Commercialised collecting targeting these species must also be regulated by future legislation.
- Published
- 2023
- Full Text
- View/download PDF
4. Cut to Disarm Plant Defence: A Unique Oviposition Behaviour in Rhynchites foveipennis (Coleoptera: Attelabidae).
- Author
-
Zhang ZY, Li W, Huang QC, Yang L, Chen XL, Xiao RD, Tang CQ, and Hu SJ
- Abstract
Female weevils of the family Attelabidae (Coleoptera: Curculionoidea) possess a unique behaviour of partially cutting the branches connecting egg-bearing organs of their host plants during oviposition. However, the consequence of such behaviour remains unclear. Using Rhynchites foveipennis and its host pear ( Pyrus pyrifolia ), the present study tested the hypothesis that the oviposition behaviour could disarm the host plants' defence. We compared the survival rates, growth rates, and performance of eggs and larvae under two conditions: (1) the fruit stems were naturally damaged by the females before and after oviposition, and (2) the fruit stems were artificially protected from the females. When fruit stems were protected from female damage, the survival rates of eggs and larvae were only 21.3-32.6%, respectively; and the larval weight was 3.2-4.1 mg 30 days after laying eggs. When the fruit stems were damaged, the survival rates of eggs and larvae reached 86.1-94.0%, respectively; and the larval weight reached 73.0-74.9 mg 30 days after laying eggs. The contents of tannin and flavonoids in the pears did not change significantly along with the oviposition and larval feeding, but weevil eggs were crushed and killed by the callus in the pears. Once the stunted larvae in branch-growing pears were moved into the picked-off ones, the growth and development recovered. The findings indicate that the oviposition behaviour can significantly increase the survival of the offspring. Our study suggested that the oviposition behaviour of attelabid weevils is a strategy to overcome plant defence.
- Published
- 2023
- Full Text
- View/download PDF
5. Butterfly Conservation in China: From Science to Action.
- Author
-
Wang WL, Suman DO, Zhang HH, Xu ZB, Ma FZ, and Hu SJ
- Abstract
About 10% of the Earth's butterfly species inhabit the highly diverse ecosystems of China. Important for the ecological, economic, and cultural services they provide, many butterfly species experience threats from land use shifts and climate change. China has recently adopted policies to protect the nation's biodiversity resources. This essay examines the current management of butterflies in China and suggests various easily implementable actions that could improve these conservation efforts. Our recommendations are based on the observations of a transdisciplinary group of entomologists and environmental policy specialists. Our analysis draws on other successful examples around the world that China may wish to consider. China needs to modify its scientific methodologies behind butterfly conservation management: revising the criteria for listing protected species, focusing on umbrella species for broader protection, identifying high priority areas and refugia for conservation, among others. Rural and urban land uses that provide heterogeneous habitats, as well as butterfly host and nectar plants, must be promoted. Butterfly ranching and farming may also provide opportunities for sustainable community development. Many possibilities exist for incorporating observations of citizen scientists into butterfly data collection at broad spatial and temporal scales. Our recommendations further the ten Priority Areas of China's National Biodiversity Conservation Strategy and Action Plan (2011-2030).
- Published
- 2020
- Full Text
- View/download PDF
6. Spatial Distribution of Pollinating Butterflies in Yunnan Province, Southwest China with Resource Conservation Implications.
- Author
-
Zhang HH, Wang WL, Yu Q, Xing DH, Xu ZB, Duan K, Zhu JQ, Zhang X, Li YP, and Hu SJ
- Abstract
Pollinating butterflies are an important asset to agriculture, which still depends on wild resources. Yunnan Province in Southwest China is a region with typical montane agriculture, but this resource is poorly investigated. From literature reference and specimen examination, the present study identified 554 species of pollinating butterflies (50.8% of the total butterflies) from Yunnan, with family Nymphalidae possessing the least number of pollinators (80 species, 16.0%), while the remaining four families are pollinator-rich (>73%). Tropical lowlands and mountain-valley areas possess higher species richness than those with plain terrains. The species richness of pollinating butterflies in Yunnan does not simply decline with the increase of latitude, nor is significantly different between West and East Yunnan. Zonation of pollinating butterflies using the parsimony analysis of endemicity (PAE) identified nine distribution zones and ten subzones. Most areas of endemism (AOE) are found in lowlands or mountain-valley areas, complexity of terrains, climates, and vegetation types are believed to be the main causes of such endemicity. The potential pollinating service of these butterflies could be great to montane agriculture with expanding areas of cash crops and fruit horticulture. Conservation strategies for pollinating butterflies may consist of preserving habitats and establishing butterfly-friendly agriculture based on local traditions.
- Published
- 2020
- Full Text
- View/download PDF
7. Are the Yellow and Red Marked Club-Tail Losaria coon the Same Species?
- Author
-
Xu ZB, Wang YY, Condamine FL, Cotton AM, and Hu SJ
- Abstract
Losaria coon (Fabricius, 1793) is currently comprised of ten subspecies, which were originally described under two names, Papilio coon and P. doubledayi before 1909, when they were combined as one species. The main difference between them is the colour of abdomen and hindwing subterminal spots-yellow in coon and red in doubledayi . Wing morphology, male and female genitalia, and molecular evidence (DNA barcodes) were analysed for multiple subspecies of L. coon and three other Losaria species- rhodifer , neptunus , and palu . Our molecular data support the separation of L. coon and L. doubledayi stat. rev. as two distinct species, with L. rhodifer positioned between them in phylogenetic analyses. Wing morphology and genitalic structures also confirm the molecular conclusions. Our findings divide L. coon into two species occupying different geographic ranges: with L. coon restricted to southern Sumatra, Java, and Bawean Island, while L. doubledayi occurs widely in regions from North India to northern Sumatra, including Hainan and Nicobar Islands. Hence, future conservation efforts must reassess the status and threat factors of the two species to form updated strategies.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.