1. Ambient and High Pressure CuNiSb2: Metal-Ordered and Metal-Disordered NiAs-Type Derivative Pnictides
- Author
-
Chongin Pak, David Walker, Thomas J. Emge, Martha Greenblatt, Gabriel Kotliar, Xiaoyan Tan, Corey E. Frank, Saul H. Lapidus, Chang-Jong Kang, Callista M. Skaggs, Christopher J. Perez, Joke Hadermann, and Susan M. Kauzlarich
- Subjects
education.field_of_study ,Rietveld refinement ,Chemistry ,Population ,Thermoelectric materials ,Electron localization function ,Inorganic Chemistry ,Crystal ,Paramagnetism ,Crystallography ,Seebeck coefficient ,Physical and Theoretical Chemistry ,education ,Single crystal - Abstract
The mineral Zlatogorite, CuNiSb2, was synthesized in the laboratory for the first time by annealing elements at ambient pressure (CuNiSb2-AP). Rietveld refinement of synchrotron powder X-ray diffraction data indicates that CuNiSb2-AP crystallizes in the NiAs-derived structure (P3m1, #164) with Cu and Ni ordering. The structure consists of alternate NiSb6 and CuSb6 octahedral layers via face-sharing. The formation of such structure instead of metal disordered NiAs-type structure (P63/mmc, #194) is validated by the lower energy of the ordered phase by first-principle calculations. Interatomic crystal orbital Hamilton population, electron localization function, and charge density analysis reveal strong Ni-Sb, Cu-Sb, and Cu-Ni bonding and long weak Sb-Sb interactions in CuNiSb2-AP. The magnetic measurement indicates that CuNiSb2-AP is Pauli paramagnetic. First-principle calculations and experimental electrical resistivity measurements reveal that CuNiSb2-AP is a metal. The low Seebeck coefficient and large thermal conductivity suggest that CuNiSb2 is not a potential thermoelectric material. Single crystals were grown by chemical vapor transport. The high pressure sample (CuNiSb2-8 GPa) was prepared by pressing CuNiSb2-AP at 700 °C and 8 GPa. However, the structures of single crystal and CuNiSb2-8 GPa are best fit with a disordered metal structure in the P3m1 space group, corroborated by transmission electron microscopy.
- Published
- 2020
- Full Text
- View/download PDF