1. Effect of Spin–Orbit Coupling on Phonon-Mediated Magnetic Relaxation in a Series of Zero-Valent Vanadium, Niobium, and Tantalum Isocyanide Complexes
- Author
-
Chakarawet, Khetpakorn, Atanasov, Mihail, Ellis, John E, Lukens, Wayne W, Young, Victor G, Chatterjee, Ruchira, Neese, Frank, and Long, Jeffrey R
- Subjects
Inorganic Chemistry ,Chemical Sciences ,Physical Chemistry (incl. Structural) ,Other Chemical Sciences ,Inorganic & Nuclear Chemistry ,Inorganic chemistry ,Macromolecular and materials chemistry - Abstract
Spin-vibronic coupling leads to spin relaxation in paramagnetic molecules, and an understanding of factors that contribute to this phenomenon is essential for designing next-generation spintronics technology, including single-molecule magnets and spin-based qubits, wherein long-lifetime magnetic ground states are desired. We report spectroscopic and magnetic characterization of the isoelectronic and isostructural series of homoleptic zerovalent transition metal triad M(CNDipp)6 (M = V, Nb, Ta; CNDipp = 2,6-diisopropylphenyl isocyanide) and show experimentally the significant increase in spin relaxation rate upon going from V to Nb to Ta. Correlated electronic calculations and first principle spin-phonon computations support the role of spin-orbit coupling in modulating spin-phonon relaxation. Our results provide experimental evidence that increasing magnetic anisotropy through spin-orbit coupling interactions leads to increased spin-vibronic relaxation, which is detrimental to long spin lifetime in paramagnetic molecules.
- Published
- 2021