1. Cybercrime characterization in the department of Cundinamarca during 2021 through exploratory analysis and machine learning
- Author
-
Gabriel Elías Chanchí Golondrino, Manuel Alejandro Ospina Alarcón, and Luis Freddy Muñoz Sanabria
- Abstract
Teniendo en cuenta la amplia difusión que ha tenido la analítica de datos en diferentes ámbitos de aplicación y considerando los escases de datasets específicos asociados a los delitos informáticos dentro de las estrategias de datos abiertos en Colombia, este artículo tiene como objetivo realizar la caracterización de los delitos informáticos del departamento de Cundinamarca, mediante el uso de técnicas de análisis exploratorio y machine learning. La presente investigación fue desarrollada mediante 4 fases metodológicas: adecuación de los datos, análisis exploratorio de los datos, aplicación de modelos de machine learning y finalmente generación de información de valor agregado. Para el desarrollo del estudio propuesto, se conformó un conjunto de datos a partir del dataset de 35000 registros publicado por la Policía Nacional en el portal de datos abiertos de Colombia, el cual aborda los delitos de alto impacto dentro del departamento de Cundinamarca y ocurridos durante el primer semestre de 2021. El dataset de delitos cibernéticos conformado cuenta con un total de 1513 registros e incluye atributos tales como: día, trimestre, municipio, zona, victima, edad y delito, de tal modo que a nivel del análisis exploratorio se aplicaron métodos de estadística descriptiva sobre los diferentes atributos, mientras que a nivel de machine learning se hizo uso de los modelos de reglas de asociación y clustering con el fin de determinar de manera respectiva la relación de los atributos con el tipo de delito, y los grupos representativos que se forman al relacionar la edad con el tipo de delito y el municipio con el tipo de delito. El estudio desarrollado permitió demostrar la utilidad y potencialidad que tienen las técnicas de analítica de datos en el campo de la ciberseguridad, de cara a apoyar la toma de decisiones por parte de las autoridades pertinentes.
- Published
- 2022
- Full Text
- View/download PDF