1. Simulation methods and validation criteria for modeling cardiac ventricular electrophysiology
- Author
-
Daniel B. Ennis, N.P. Borgstrom, Zhilin Qu, Aditya V. S. Ponnaluri, James N. Weiss, Alan Garfinkel, Luigi E. Perotti, Anna Frid, Olujimi A. Ajijola, Shankarjee Krishnamoorthi, William S. Klug, and Panfilov, Alexander V
- Subjects
Physiology ,lcsh:Medicine ,Action Potentials ,Heart electrophysiology ,030204 cardiovascular system & hematology ,Arrhythmias ,Cardiovascular ,Electrocardiography ,0302 clinical medicine ,Models ,Medicine and Health Sciences ,Ventricular Function ,Myocytes, Cardiac ,Cardiovascular Imaging ,lcsh:Science ,0303 health sciences ,Multidisciplinary ,medicine.diagnostic_test ,Cardiac electrophysiology ,Applied Mathematics ,Models, Cardiovascular ,Animal Models ,Magnetic Resonance Imaging ,Finite element method ,Electrophysiology ,medicine.anatomical_structure ,Diffusion Tensor Imaging ,Heart Disease ,Cardiovascular Diseases ,Physical Sciences ,Cardiology ,cardiovascular system ,Engineering and Technology ,Rabbits ,Cardiac ,Arrhythmia ,Research Article ,Biotechnology ,Computer Modeling ,Biophysical Simulations ,Cell Physiology ,Computer and Information Sciences ,medicine.medical_specialty ,Purkinje fibers ,General Science & Technology ,Heart Ventricles ,Finite Element Analysis ,Biophysics ,Bioengineering ,Research and Analysis Methods ,Purkinje Fibers ,03 medical and health sciences ,Model Organisms ,Internal medicine ,medicine ,Animals ,Computer Simulation ,030304 developmental biology ,Myocytes ,business.industry ,lcsh:R ,Biology and Life Sciences ,Computational Biology ,Arrhythmias, Cardiac ,Magnetic resonance imaging ,Cell Biology ,Purkinje fiber ,medicine.disease ,Heart stimulation ,Ventricular fibrillation ,lcsh:Q ,Cardiac Electrophysiology ,business ,Mathematics ,Diffusion MRI ,Endocardium - Abstract
We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG) and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations., Shankarjee Krishnamoorthi et. al
- Published
- 2014
- Full Text
- View/download PDF