1. Classification of Consistent Systems of Handlebody Group Representations.
- Author
-
Müller, Lukas and Woike, Lukas
- Subjects
- *
VERTEX operator algebras , *VECTOR spaces , *MODULAR groups , *MODULAR forms , *ALGEBRA - Abstract
The classifying spaces of handlebody groups form a modular operad. Algebras over the handlebody operad yield systems of representations of handlebody groups that are compatible with gluing. We prove that algebras over the modular operad of handlebodies with values in an arbitrary symmetric monoidal bicategory |$\mathcal{M}$| (we introduce for these the name ansular functor) are equivalent to self-dual balanced braided algebras in |$\mathcal{M}$|. After specialization to a linear framework, this proves that consistent systems of handlebody group representations on finite-dimensional vector spaces are equivalent to ribbon Grothendieck-Verdier categories in the sense of Boyarchenko-Drinfeld. Additionally, it produces a concrete formula for the vector space assigned to an arbitrary handlebody in terms of a generalization of Lyubashenko's coend. Our main result can be used to obtain an ansular functor from vertex operator algebras subject to mild finiteness conditions. This includes examples of vertex operator algebras whose representation category has a non-exact monoidal product. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF