1. Inhibiting Inflammation with Myeloid Cell-Specific Nanobiologics Promotes Organ Transplant Acceptance.
- Author
-
Braza MS, van Leent MMT, Lameijer M, Sanchez-Gaytan BL, Arts RJW, Pérez-Medina C, Conde P, Garcia MR, Gonzalez-Perez M, Brahmachary M, Fay F, Kluza E, Kossatz S, Dress RJ, Salem F, Rialdi A, Reiner T, Boros P, Strijkers GJ, Calcagno CC, Ginhoux F, Marazzi I, Lutgens E, Nicolaes GAF, Weber C, Swirski FK, Nahrendorf M, Fisher EA, Duivenvoorden R, Fayad ZA, Netea MG, Mulder WJM, and Ochando J
- Subjects
- Allografts, Animals, Biomarkers, HMGB1 Protein genetics, Immune Tolerance, Immunity, Innate, Immunologic Memory, Macrophages immunology, Macrophages metabolism, Mice, TOR Serine-Threonine Kinases metabolism, Vimentin genetics, Graft Survival immunology, Immunosuppression Therapy, Inflammation immunology, Myeloid Cells immunology, Myeloid Cells metabolism, Organ Transplantation
- Abstract
Inducing graft acceptance without chronic immunosuppression remains an elusive goal in organ transplantation. Using an experimental transplantation mouse model, we demonstrate that local macrophage activation through dectin-1 and toll-like receptor 4 (TLR4) drives trained immunity-associated cytokine production during allograft rejection. We conducted nanoimmunotherapeutic studies and found that a short-term mTOR-specific high-density lipoprotein (HDL) nanobiologic treatment (mTORi-HDL) averted macrophage aerobic glycolysis and the epigenetic modifications underlying inflammatory cytokine production. The resulting regulatory macrophages prevented alloreactive CD8
+ T cell-mediated immunity and promoted tolerogenic CD4+ regulatory T (Treg) cell expansion. To enhance therapeutic efficacy, we complemented the mTORi-HDL treatment with a CD40-TRAF6-specific nanobiologic (TRAF6i-HDL) that inhibits co-stimulation. This synergistic nanoimmunotherapy resulted in indefinite allograft survival. Together, we show that HDL-based nanoimmunotherapy can be employed to control macrophage function in vivo. Our strategy, focused on preventing inflammatory innate immune responses, provides a framework for developing targeted therapies that promote immunological tolerance., (Copyright © 2018 Elsevier Inc. All rights reserved.)- Published
- 2018
- Full Text
- View/download PDF