1. Wasserstein Distances, Geodesics and Barycenters of Merge Trees
- Author
-
Jules Vidal, Julie Delon, Julien Tierny, Mathieu Pont, Algorithmes, Programmes et Résolution (APR), LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut des Sciences du Calcul et des Données (ISCD), and Sorbonne Université (SU)
- Subjects
Computational Geometry (cs.CG) ,FOS: Computer and information sciences ,Geodesic ,Computer science ,Computer Vision and Pattern Recognition (cs.CV) ,Computation ,Branch-decomposition ,Computer Science - Computer Vision and Pattern Recognition ,02 engineering and technology ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] ,Computer Science - Graphics ,FOS: Electrical engineering, electronic engineering, information engineering ,0202 electrical engineering, electronic engineering, information engineering ,Mathematics::Metric Geometry ,Cluster analysis ,ComputingMilieux_MISCELLANEOUS ,[INFO.INFO-MS]Computer Science [cs]/Mathematical Software [cs.MS] ,Image and Video Processing (eess.IV) ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,020207 software engineering ,Electrical Engineering and Systems Science - Image and Video Processing ,Computer Graphics and Computer-Aided Design ,Graphics (cs.GR) ,[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] ,Visualization ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,Signal Processing ,Metric (mathematics) ,Computer Science - Computational Geometry ,Edit distance ,Computer Vision and Pattern Recognition ,Algorithm ,Software ,Merge (linguistics) - Abstract
This paper presents a unified computational framework for the estimation of distances, geodesics and barycenters of merge trees. We extend recent work on the edit distance [106] and introduce a new metric, called the Wasserstein distance between merge trees, which is purposely designed to enable efficient computations of geodesics and barycenters. Specifically, our new distance is strictly equivalent to the L2-Wasserstein distance between extremum persistence diagrams, but it is restricted to a smaller solution space, namely, the space of rooted partial isomorphisms between branch decomposition trees. This enables a simple extension of existing optimization frameworks [112] for geodesics and barycenters from persistence diagrams to merge trees. We introduce a task-based algorithm which can be generically applied to distance, geodesic, barycenter or cluster computation. The task-based nature of our approach enables further accelerations with shared-memory parallelism. Extensive experiments on public ensembles and SciVis contest benchmarks demonstrate the efficiency of our approach -- with barycenter computations in the orders of minutes for the largest examples -- as well as its qualitative ability to generate representative barycenter merge trees, visually summarizing the features of interest found in the ensemble. We show the utility of our contributions with dedicated visualization applications: feature tracking, temporal reduction and ensemble clustering. We provide a lightweight C++ implementation that can be used to reproduce our results.
- Published
- 2022