1. Multi-body Motion Estimation from Monocular Vehicle-Mounted Cameras
- Author
-
Davide Scaramuzza, Reza Sabzevari, and University of Zurich
- Subjects
multiple moving object localization ,0209 industrial biotechnology ,simultaneous localization and mapping (SLAM) ,Computer science ,02 engineering and technology ,Kinematics ,Simultaneous localization and mapping ,computer vision ,matrix decomposition ,unconstrained motion ,SLAM (robots) ,motion estimation ,020901 industrial engineering & automation ,computer vision community ,multibody motion estimation ,0202 electrical engineering, electronic engineering, information engineering ,Structure from motion ,Computer vision ,image segmentation ,Tracking ,object detection ,simultaneous multiple moving object ,Computer Science Applications ,vehicle kinematic constraints ,020201 artificial intelligence & image processing ,Motion segmentation ,trajectory matrix factorization ,10009 Department of Informatics ,reprojection error ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,2207 Control and Systems Engineering ,multibody structure from motion ,000 Computer science, knowledge & systems ,Match moving ,camera ego motion ,cameras ,Motion estimation ,1706 Computer Science Applications ,Electrical and Electronic Engineering ,Visual odometry ,noisy image measurements ,level image dataset ,ComputingMethodologies_COMPUTERGRAPHICS ,street ,projective multiple ,business.industry ,2208 Electrical and Electronic Engineering ,mounted cameras ,vehicle ego motion estimation ,constrained motion model ,monocular vehicle ,Vehicles ,eoru motions ,Object detection ,urban environments ,robot localization pipeline ,Motion field ,Control and Systems Engineering ,multi ,eoru ,Artificial intelligence ,business ,Estimation ,body structure from motion - Abstract
This paper addresses the problem of simultaneous estimation of a vehicle's ego motion and motions of multiple moving objects in the scene–called eoru motions –through a monocular vehicle-mounted camera. Localization of multiple moving objects and estimation of their motions is crucial for autonomous vehicles. Conventional localization and mapping techniques (e.g., visual odometry and simultaneous localization and mapping) can only estimate the ego motion of the vehicle. The capability of a robot localization pipeline to deal with multiple motions has not been widely investigated in the literature. We present a theoretical framework for robust estimation of multiple relative motions in addition to the camera ego motion. First, the framework for general unconstrained motion is introduced and then it is adapted to exploit the vehicle kinematic constraints to increase efficiency. The method is based on projective factorization of the multiple-trajectory matrix . First, the ego motion is segmented and then several hypotheses are generated for the eoru motions . All the hypotheses are evaluated and the one with the smallest reprojection error is selected. The proposed framework does not need any a priori knowledge of the number of motions and is robust to noisy image measurements. The method with a constrained motion model is evaluated on a popular street-level image dataset collected in urban environments (the KITTI dataset), including several relative ego-motion and eoru-motion scenarios. A benchmark dataset ( Hopkins 155 ) is used to evaluate this method with a general motion model. The results are compared with those of the state-of-the-art methods considering a similar problem, referred to as multibody structure from motion in the computer vision community.
- Published
- 2016
- Full Text
- View/download PDF