1. Modeling and Simulation of Temporal Variation of Channel and Noise in Indoor Power-Line Network
- Author
-
D. Chariag, D. Guezgouz, Yves Raingeaud, J.-C. Le Bunetel, GREMAN (matériaux, microélectronique, acoustique et nanotechnologies) ( GREMAN - UMR 7347 ), Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire ( INSA CVL ), Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), GREMAN (matériaux, microélectronique, acoustique et nanotechnologies) (GREMAN - UMR 7347), Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Engineering ,Noise measurement ,business.industry ,020209 energy ,Electrical engineering ,Energy Engineering and Power Technology ,020206 networking & telecommunications ,02 engineering and technology ,Noise (electronics) ,law.invention ,Electric power transmission ,law ,Broadband ,0202 electrical engineering, electronic engineering, information engineering ,Electronic engineering ,Power cable ,[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Electrical and Electronic Engineering ,Resistor ,business ,Electrical impedance ,Communication channel - Abstract
International audience; Broadband power-line communication (PLC) technologies are one of the main parameters of digital convergence voice-data-video in the home environment. These technologies use the power-line network as a propagation and a communication medium. Its transmission quality depends on the frequency behavior of the propagation medium and the connected household electrical appliances. The impedance of those devices and noise levels has a great impact on the PLC systems. In this paper, a simulator for indoor power-line channels is presented. In this paper, a new approach is presented for modeling temporal variations of noise and channel on indoor power lines. A three-conductor power cable (phase, neutral, and ground) is modeled by a circuit of four elements (resistor R, inductor L, capacitance C, conductance G). The RLCG parameters are deduced from the impedance measurement in open circuit and in short circuit. The cable model is validated in time and frequency domains. Then, the temporal variation of periodic noise is modeled by a stochastic approach. The global model, combining both channel and noise variations, is validated by comparing SPICE simulation and measurement results.
- Published
- 2012
- Full Text
- View/download PDF