10 results on '"Baumgartner, Christian'
Search Results
2. Sampling Possible Reconstructions of Undersampled Acquisitions in MR Imaging With a Deep Learned Prior
- Author
-
Kerem C. Tezcan, Neerav Karani, Christian F. Baumgartner, and Ender Konukoglu
- Subjects
Radiological and Ultrasound Technology ,Connectome ,Image Processing, Computer-Assisted ,Humans ,Electrical and Electronic Engineering ,Magnetic Resonance Imaging ,Software ,Algorithms ,Computer Science Applications - Abstract
Undersampling the k-space during MR acquisitions saves time, however results in an ill-posed inversion problem, leading to an infinite set of images as possible solutions. Traditionally, this is tackled as a reconstruction problem by searching for a single "best" image out of this solution set according to some chosen regularization or prior. This approach, however, misses the possibility of other solutions and hence ignores the uncertainty in the inversion process. In this paper, we propose a method that instead returns multiple images which are possible under the acquisition model and the chosen prior to capture the uncertainty in the inversion process. To this end, we introduce a low dimensional latent space and model the posterior distribution of the latent vectors given the acquisition data in k-space, from which we can sample in the latent space and obtain the corresponding images. We use a variational autoencoder for the latent model and the Metropolis adjusted Langevin algorithm for the sampling. We evaluate our method on two datasets; with images from the Human Connectome Project and in-house measured multi-coil images. We compare to five alternative methods. Results indicate that the proposed method produces images that match the measured k-space data better than the alternatives, while showing realistic structural variability. Furthermore, in contrast to the compared methods, the proposed method yields higher uncertainty in the undersampled phase encoding direction, as expected. ISSN:0278-0062 ISSN:1558-254X
- Published
- 2022
3. MR Image Reconstruction Using Deep Density Priors
- Author
-
Klaas P. Pruessmann, Kerem Can Tezcan, Ender Konukoglu, Christian F. Baumgartner, Roger Luechinger, University of Zurich, and Tezcan, Kerem C
- Subjects
FOS: Computer and information sciences ,MR imaging ,image reconstruction ,machine learning ,unsupervised learning ,Computer science ,Computer Vision and Pattern Recognition (cs.CV) ,Computer Science - Computer Vision and Pattern Recognition ,030218 nuclear medicine & medical imaging ,170 Ethics ,0302 clinical medicine ,Statistics - Machine Learning ,Image Processing, Computer-Assisted ,T1 weighted ,Radiological and Ultrasound Technology ,medicine.diagnostic_test ,Image and Video Processing (eess.IV) ,Reconstruction algorithm ,Density estimation ,Magnetic Resonance Imaging ,Computer Science Applications ,Undersampling ,Unsupervised learning ,Probability distribution ,Algorithms ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Machine Learning (stat.ML) ,610 Medicine & health ,Iterative reconstruction ,03 medical and health sciences ,Deep Learning ,Prior probability ,FOS: Electrical engineering, electronic engineering, information engineering ,Connectome ,1706 Computer Science Applications ,medicine ,Humans ,10237 Institute of Biomedical Engineering ,Electrical and Electronic Engineering ,3614 Radiological and Ultrasound Technology ,business.industry ,2208 Electrical and Electronic Engineering ,Deep learning ,Magnetic resonance imaging ,Pattern recognition ,Electrical Engineering and Systems Science - Image and Video Processing ,Hyperintensity ,1712 Software ,Artificial intelligence ,business ,Software - Abstract
Algorithms for Magnetic Resonance (MR) image reconstruction from undersampled measurements exploit prior information to compensate for missing k-space data. Deep learning (DL) provides a powerful framework for extracting such information from existing image datasets, through learning, and then using it for reconstruction. Leveraging this, recent methods employed DL to learn mappings from undersampled to fully sampled images using paired datasets, including undersampled and corresponding fully sampled images, integrating prior knowledge implicitly. In this article, we propose an alternative approach that learns the probability distribution of fully sampled MR images using unsupervised DL, specifically Variational Autoencoders (VAE), and use this as an explicit prior term in reconstruction, completely decoupling the encoding operation from the prior. The resulting reconstruction algorithm enjoys a powerful image prior to compensate for missing k-space data without requiring paired datasets for training nor being prone to associated sensitivities, such as deviations in undersampling patterns used in training and test time or coil settings. We evaluated the proposed method with T1 weighted images from a publicly available dataset, multicoil complex images acquired from healthy volunteers (N=8) and images with white matter lesions. The proposed algorithm, using the VAE prior, produced visually high quality reconstructions and achieved low RMSE values, outperforming most of the alternative methods on the same dataset. On multi-coil complex data, the algorithm yielded accurate magnitude and phase reconstruction results. In the experiments on images with white matter lesions, the method faithfully reconstructed the lesions., IEEE Transactions on Medical Imaging, 38 (7), ISSN:0278-0062, ISSN:1558-254X
- Published
- 2019
- Full Text
- View/download PDF
4. Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?
- Author
-
Frederick Cervenansky, Gerard Sanroma, Jay Patravali, Sandy Engelhardt, Pheng-Ann Heng, Georgios Tziritas, Clement Zotti, Elias Grinias, Paul F. Jäger, Mahendra Khened, Klaus H. Maier-Hein, Ganapathy Krishnamurthi, Karim Lekadir, Yoonmi Hong, Xin Yang, Steffen E. Petersen, Ivo Wolf, Christian F. Baumgartner, Xavier Pennec, Olivier Bernard, Sandy Napel, Jelmer M. Wolterink, Miguel Ángel González Ballester, Marc-Michel Rohé, Peter M. Full, Ivana Išgum, Lisa M. Koch, Fabian Isensee, Varghese Alex Kollerathu, Alain Lalande, Olivier Humbert, Yeonggul Jang, Maxime Sermesant, Irem Cetin, Oscar Camara, Shubham Jain, Pierre-Marc Jodoin, Images et Modèles, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire d'Electronique, d'Informatique et d'Image [EA 7508] (Le2i), Université de Technologie de Belfort-Montbeliard (UTBM)-Université de Bourgogne (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), Département d'informatique [Sherbrooke] (UdeS), Faculté des sciences [Sherbrooke] (UdeS), Université de Sherbrooke (UdeS)-Université de Sherbrooke (UdeS), Service Informatique et développements, The Chinese University of Hong Kong [Hong Kong], Universitat Pompeu Fabra [Barcelona] (UPF), Institució Catalana de Recerca i Estudis Avançats (ICREA), Stanford School of Medicine [Stanford], Stanford Medicine, Stanford University-Stanford University, William Harvey Research Institute, Barts and the London Medical School, Computer Science Department [Crete] (CSD-UOC), School of Sciences and Engineering [Crete] (SSE-UOC), University of Crete [Heraklion] (UOC)-University of Crete [Heraklion] (UOC), Department of Engineering Design [Madras], Indian Institute of Technology Madras (IIT Madras), Analysis and Simulation of Biomedical Images (ASCLEPIOS), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), E-Patient : Images, données & mOdèles pour la médeciNe numériquE (EPIONE), German Cancer Research Center - Deutsches Krebsforschungszentrum [Heidelberg] (DKFZ), Heidelberg University Hospital [Heidelberg], Hochschule Mannheim - University of Applied Sciences, Computer Vision Laboratory - ETHZ [Zurich], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), University Medical Center [Utrecht], Yonsei University, Qure.ai company, Transporteurs et Imagerie, Radiothérapie en Oncologie et Mécanismes biologiques des Altérations du Tissu Osseux (TIRO-MATOs - UMR E4320), UMR E4320 (TIRO-MATOs), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Côte d'Azur (UCA)-Service Hospitalier Frédéric Joliot (SHFJ), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Centre National de la Recherche Scientifique (CNRS), Service Hospitalier Frédéric Joliot (SHFJ), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-UMR E4320 (TIRO-MATOs), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Côte d'Azur (UCA)
- Subjects
Male ,Databases, Factual ,Heart Diseases ,Computer science ,[SDV]Life Sciences [q-bio] ,Lleft and right ventricles ,030218 nuclear medicine & medical imaging ,Task (project management) ,Cardiac segmentation and diagnosis ,03 medical and health sciences ,0302 clinical medicine ,Deep Learning ,Image Interpretation, Computer-Assisted ,medicine ,Medical imaging ,Humans ,Segmentation ,Electrical and Electronic Engineering ,Radiological and Ultrasound Technology ,medicine.diagnostic_test ,business.industry ,Myocardium ,Deep learning ,Magnetic resonance imaging ,Pattern recognition ,Heart ,Image segmentation ,Magnetic Resonance Imaging ,Computer Science Applications ,Cardiac Imaging Techniques ,medicine.anatomical_structure ,Ventricle ,Female ,Artificial intelligence ,business ,Cardiac magnetic resonance ,Left and right ventricles ,030217 neurology & neurosurgery ,Software ,MRI - Abstract
Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the “Automatic Cardiac Diagnosis Challenge” dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification from two medical experts. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies. In the wake of the 2017 MICCAI-ACDC challenge, we report results from deep learning methods provided by nine research groups for the segmentation task and four groups for the classification task. Results show that the best methods faithfully reproduce the expert analysis, leading to a mean value of 0.97 correlation score for the automatic extraction of clinical indices and an accuracy of 0.96 for automatic diagnosis. These results clearly open the door to highly accurate and fully automatic analysis of cardiac CMRI. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for new submissions.
- Published
- 2018
- Full Text
- View/download PDF
5. MR Image Reconstruction Using Deep Density Priors
- Author
-
Tezcan, Kerem C., primary, Baumgartner, Christian F., additional, Luechinger, Roger, additional, Pruessmann, Klaas P., additional, and Konukoglu, Ender, additional
- Published
- 2019
- Full Text
- View/download PDF
6. SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound
- Author
-
Christian F, Baumgartner, Konstantinos, Kamnitsas, Jacqueline, Matthew, Tara P, Fletcher, Sandra, Smith, Lisa M, Koch, Bernhard, Kainz, and Daniel, Rueckert
- Subjects
fetal ultrasound ,standard plane detection ,Pregnancy ,weakly supervised localisation ,Image Processing, Computer-Assisted ,Video Recording ,Humans ,Female ,Convolutional neural networks ,Neural Networks, Computer ,Algorithms ,Ultrasonography, Prenatal ,Article - Abstract
Identifying and interpreting fetal standard scan planes during 2-D ultrasound mid-pregnancy examinations are highly complex tasks, which require years of training. Apart from guiding the probe to the correct location, it can be equally difficult for a non-expert to identify relevant structures within the image. Automatic image processing can provide tools to help experienced as well as inexperienced operators with these tasks. In this paper, we propose a novel method based on convolutional neural networks, which can automatically detect 13 fetal standard views in freehand 2-D ultrasound data as well as provide a localization of the fetal structures via a bounding box. An important contribution is that the network learns to localize the target anatomy using weak supervision based on image-level labels only. The network architecture is designed to operate in real-time while providing optimal output for the localization task. We present results for real-time annotation, retrospective frame retrieval from saved videos, and localization on a very large and challenging dataset consisting of images and video recordings of full clinical anomaly screenings. We found that the proposed method achieved an average F1-score of 0.798 in a realistic classification experiment modeling real-time detection, and obtained a 90.09% accuracy for retrospective frame retrieval. Moreover, an accuracy of 77.8% was achieved on the localization task.
- Published
- 2017
7. Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?
- Author
-
Bernard, Olivier, primary, Lalande, Alain, additional, Zotti, Clement, additional, Cervenansky, Frederick, additional, Yang, Xin, additional, Heng, Pheng-Ann, additional, Cetin, Irem, additional, Lekadir, Karim, additional, Camara, Oscar, additional, Gonzalez Ballester, Miguel Angel, additional, Sanroma, Gerard, additional, Napel, Sandy, additional, Petersen, Steffen, additional, Tziritas, Georgios, additional, Grinias, Elias, additional, Khened, Mahendra, additional, Kollerathu, Varghese Alex, additional, Krishnamurthi, Ganapathy, additional, Rohe, Marc-Michel, additional, Pennec, Xavier, additional, Sermesant, Maxime, additional, Isensee, Fabian, additional, Jager, Paul, additional, Maier-Hein, Klaus H., additional, Full, Peter M., additional, Wolf, Ivo, additional, Engelhardt, Sandy, additional, Baumgartner, Christian F., additional, Koch, Lisa M., additional, Wolterink, Jelmer M., additional, Isgum, Ivana, additional, Jang, Yeonggul, additional, Hong, Yoonmi, additional, Patravali, Jay, additional, Jain, Shubham, additional, Humbert, Olivier, additional, and Jodoin, Pierre-Marc, additional
- Published
- 2018
- Full Text
- View/download PDF
8. High-Resolution Self-Gated Dynamic Abdominal MRI Using Manifold Alignment
- Author
-
Daniel R. Balfour, Paul Marsden, Andrew J. Reader, Andrew P. King, Xin Chen, Muhammad Usman, Christian F. Baumgartner, and Claudia Prieto
- Subjects
Geometry ,Iterative reconstruction ,030218 nuclear medicine & medical imaging ,Correlation ,03 medical and health sciences ,0302 clinical medicine ,Abdomen ,Entropy (information theory) ,Humans ,Electrical and Electronic Engineering ,Image gradient ,Mathematics ,Retrospective Studies ,Manifold alignment ,Ground truth ,Radiological and Ultrasound Technology ,Respiration ,Mathematical analysis ,Image Enhancement ,Magnetic Resonance Imaging ,Manifold ,Computer Science Applications ,Temporal resolution ,Magnetic resonance imaging (MRI), Reconstruction, Manifold alignment (MA), MRI self-gating, Respiratory motion ,030217 neurology & neurosurgery ,Software - Abstract
We present a novel retrospective self-gating method based on manifold alignment (MA), which enables reconstruction of free breathing, high spatial, and temporal resolution abdominal magnetic resonance imaging sequences. Based on a radial golden-angle acquisition trajectory, our method enables a multidimensional self-gating signal to be extracted from the ${k}$ -space data for more accurate motion representation. The ${k}$ -space radial profiles are evenly divided into a number of overlapping groups based on their radial angles. MA is then used to simultaneously learn and align the low dimensional manifolds of all groups, and embed them into a common manifold. In the manifold, ${k}$ -space profiles that represent similar respiratory positions are close to each other. Image reconstruction is performed by combining radial profiles with evenly distributed angles that are close in the manifold. Our method was evaluated on both 2-D and 3-D synthetic and in vivo data sets. On the synthetic data sets, our method achieved high correlation with the ground truth in terms of image intensity and virtual navigator values. Using the in vivo data, compared with a state-of-the-art approach based on the center of ${k}$ -space gating, our method was able to make use of much richer profile data for self-gating, resulting in statistically significantly better quantitative measurements in terms of organ sharpness and image gradient entropy.
- Published
- 2017
- Full Text
- View/download PDF
9. SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound
- Author
-
Baumgartner, Christian F., primary, Kamnitsas, Konstantinos, additional, Matthew, Jacqueline, additional, Fletcher, Tara P., additional, Smith, Sandra, additional, Koch, Lisa M., additional, Kainz, Bernhard, additional, and Rueckert, Daniel, additional
- Published
- 2017
- Full Text
- View/download PDF
10. High-Resolution Self-Gated Dynamic Abdominal MRI Using Manifold Alignment
- Author
-
Chen, Xin, primary, Usman, Muhammad, additional, Baumgartner, Christian F., additional, Balfour, Daniel R., additional, Marsden, Paul K., additional, Reader, Andrew J., additional, Prieto, Claudia, additional, and King, Andrew P., additional
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.