1. Dependence of apparent resistance of four-electrode probes on insertion depth
- Author
-
Jang-Zern Tsai, Supan Tungjitkusolmun, E.J. Woo, Hong Cao, J.G. Webster, and V.R. Vorperian
- Subjects
Materials science ,Models, Cardiovascular ,Biomedical Engineering ,Equipment Design ,Insertion depth ,Layer thickness ,Electrode insertion ,Electrical resistivity and conductivity ,Calibration ,Electrode ,Catheter Ablation ,Electric Impedance ,Composite material ,Penetration depth ,Electrodes ,Pericardium ,Layer (electronics) ,Biomedical engineering - Abstract
The apparent resistance of a finite-thickness layer measured with a four-electrode plunge probe depends on the electrode insertion depth, electrode spacing, and layer thickness, as well as the resistivity ratio of an underlying layer. A physical model consisting of air, a saline solution layer, and an agar layer simulates the real situation of resistivity measurement. The saline layer represents the finite-thickness layer whose resistivity is to be measured by a plunge electrode probe, and the agar layer represents an underlying perturbing layer. A micropositioner controls the insertion depth of the four electrodes into the saline solution. With the apparent resistance measured on a semi-infinite-thickness layer of saline solution as standard, measurement results show decreasing apparent resistance and increasing error with increasing electrode insertion depth. This information is important for correct measurement of myocardial resistivity in vivo and in vitro.
- Published
- 2000
- Full Text
- View/download PDF