Stéphane Poli, Charles Pontonnier, Georges Dumont, Franck Multon, Olfa Haj Mahmoud, Analysis-Synthesis Approach for Virtual Human Simulation (MIMETIC), Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-MEDIA ET INTERACTIONS (IRISA-D6), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Bretagne Sud (UBS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-CentraleSupélec-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Bretagne Sud (UBS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), FAURECIA Sièges Automobile S.A., FAURECIA, Université de Rennes 2 (UR2)-Inria Rennes – Bretagne Atlantique, Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique)
Objective A neural networks approach has been proposed to handle various inputs such as postural, anthropometric and environmental variables in order to estimate self-reported discomfort in picking tasks. An input reduction method has been proposed, reducing the input variables to the minimum data required to estimate self-reported discomfort with similar accuracy as the neural network fed with all variables. Background Previous works have attempted to explore the relationship between several factors and self-reported discomfort using observational methods. The results showed that this relationship was not a simple linear relationship. Another study used neural networks to model the function returning reported discomfort according to static posture, age, and anthropometrics variables. The results demonstrated the model’s ability to predict reported discomfort. But all the available variables were used to design the neural network. Method Eleven subjects carried-out picking tasks with various masses (0, 1, 3 kg) and imposed duration (5, 10, or 15 s). Continuous REBA score, anthropometric and environmental data were computed, and subjects’ discomfort were collected. The data set of this work consisted in the computed continuous REBA score, anthropometric, environmental data and collected subjects’ discomfort. Results The results showed that the correlation between the estimated and experimental tested data was equal to 0.775 when using all the 14 available variables. After data reduction, only 6 variables were left, with a very close performance when predicting discomfort. Conclusion A neural network approach has been proposed to estimate self-reported discomfort according to a minimum set of postural, anthropometric and environmental variables in picking tasks. Application This method has the potential to support ergonomists in workstation designing processes, by adding discomfort prediction to virtual manikins’ behaviors in simulation tools.