1. Field measurement study of indoor thermal environment of badminton halls in a hot summer and cold winter region in different seasons in China
- Author
-
Lin Liu, Yong Ma, Ruifeng Huang, Mengyao Jia, Gan Liu, and Weitao Zheng
- Subjects
Sports environment ,Exercise population ,Natural ventilation ,Field study ,Indoor thermal environment ,Science (General) ,Q1-390 ,Social sciences (General) ,H1-99 - Abstract
The indoor thermal environment has a direct impact on human thermal comfort and health. In order to assess the status of the indoor thermal environment of typical sports buildings in hot summer and cold winter climate zones in China, 14 badminton halls in 10 cities in Hubei Province (including 5 venues in Wuhan) in this climate zone are chosen as research objects for field testing of indoor thermal environment parameters in 4 seasons. All the tested stadiums are naturally ventilated in non-event conditions. The results reveal that the average indoor temperature of badminton halls in summer is excessively high (i.e., 31.89 °C), which is higher than the regulation specified in JGJ31-2003 or GB-T18883-2022 on the reference interval of the indoor air temperature of venues in summer, (i.e., (26–28 °C) or (22–28 °C), respectively). The average indoor temperature of badminton halls in winter is too low (i.e., 12.95 °C), and it is lower than the recommendations of JGJ31-2003 or GB-T18883-2022 on the reference interval of the indoor air temperature of venues in winter (i.e., (16–18 °C) or (16–24 °C), respectively), relative humidity and air velocity are in the thermal comfort interval for all seasons, and the indoor thermal environment factors of badminton courts in spring and autumn meet the comfort requirements. The indoor and outdoor temperatures and the relative humidity of badminton courts are highly correlated. The indoor temperature and relative humidity vary according to changes in those factors outdoors, whereas the air velocity is not affected by outdoor changes. In the hot summer and cold winter climate zones, some discrepancies in the indoor temperature variation patterns of badminton halls at various altitudes are detectable. The results of this study aim to provide a solid basis for the development of indoor thermal-comfort standards for sports stadiums in China.
- Published
- 2024
- Full Text
- View/download PDF