Flexible capacitive energy storage applications require polymer nanocomposites with high dielectric properties, which can be accomplished by addition of inorganic nanofillers to the polymer matrix. Low-density polyethylene (LDPE), known for its good dielectric characteristics and wide use in electrical insulation have been investigated for the desired applications. However, the improvement of its breakdown strength still continues with the use of various nanomaterials employed as nanofillers. In this study, a waste-derived material known as biomass fly ash (BFA) as a nanofiller to improve the dielectric properties of LDPE has been explored. BFA exhibits versatility in its composition with various metal oxides, making it an attractive choice as a nanofiller. The BFA-LDPE sheets were prepared using a conventional solvent mixing and subsequent hot-pressing process, incorporating BFA loadings ranging from 1 % to 4 wt%. The effects of different BFA loadings were carefully examined, and the synthesized nanocomposites were extensively characterized using various characterization methods, such as XRD, SEM, FTIR, TGA and dielectric constant measurements, to investigate the crystallographic properties, morphology, chemical composition, and thermal stability. Among all the nanocomposites, 4 wt%BFA-LDPE exhibited the highest dielectric constant, with a value of 11.58, compared to simple LDPE that had a dielectric constant of 8.33. This improvement is ascribed to the synergistic effects of different inorganic metal oxides (SiO 2 , MgO, and Fe 2 O 3 ) present in BFA. The results showed a significant enhancement in dielectric properties, indicating that the waste-derived BFA can be purposefully applied as an effective nanofiller in the LDPE-based composites with even less than 4% loading for electrical insulating applications in future studies., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2023 The Authors.)