1. Integrated network pharmacology and phosphoproteomic analyses of Baichanting in Parkinson's disease model mice
- Author
-
Xin Gao, Jiaqi Fu, DongHua Yu, Fang Lu, and Shumin Liu
- Subjects
Parkinson's disease ,Baichanting compound ,Apoptosis ,Phosphorylation ,Science (General) ,Q1-390 ,Social sciences (General) ,H1-99 - Abstract
The incidence rate of Parkinson's disease (PD) is increasing yearly. Neuronal apoptosis caused by abnormal protein phosphorylation is closely related to the pathogenesis of Parkinson's disease. At present, few PD-specific apoptosis pathways have been revealed. To investigate the effect of Baichanting (BCT) on apoptosis from the perspective of protein phosphorylation, α-syn transgenic mice were selected to observe the behavioral changes of the mice, and the apoptosis of substantia nigra cells were detected by the HE method and TUNEL method. Network pharmacology combined with phosphorylation proteomics was used to find relevant targets for BCT treatment of PD and was further verified by PRM and western blotting. BCT improved the morphology of neurons in the substantia nigra and reduced neuronal apoptosis. The main enriched pathways in the network pharmacology results were apoptosis, the p53 signaling pathway and autophagy. Western blot results showed that BCT significantly regulated the protein expression levels of BAX, Caspase-3, LC3B, P53 and mTOR and upregulated autophagy to alleviate apoptosis. Using phosphorylated proteomics and PRM validation, we found that Pak5, Grin2b, Scn1a, BcaN, L1cam and Braf are closely correlated with the targets of the web-based pharmacological screen and may be involved in p53/mTOR-mediated autophagy and apoptosis pathways. BCT can inhibit the activation of the p53/mTOR signaling pathway, thereby enhancing the autophagy function of cells, and reducing the apoptosis of neurons which is the main mechanism of its neuroprotective effect.
- Published
- 2024
- Full Text
- View/download PDF