1. Human-Derived In Vitro Models Used for Skin Toxicity Testing Under REACh.
- Author
-
Kolle SN and Landsiedel R
- Subjects
- Animals, Humans, Irritants pharmacology, Skin, Toxicity Tests, Animal Testing Alternatives, Skin Irritancy Tests
- Abstract
In regulatory toxicology, in vivo studies are still prevailing, and human-derived in vitro models are mostly used in testing for local toxicity to the skin and the eyes. A single in vitro model may be limited to address one or few molecular or cellular events leading to adverse outcomes. Hence, in many instances their regulatory use involves the combination of several in vitro models to assess the hazard potential of test substance. A so-called defined approach combines different testing methods and a 'data interpretation procedure' to obtain a comprehensive overall assessment which is used for the regulatory hazard classification of the test substance.Validation is a prerequisite of regulatory acceptance of new testing methods: This chapter provides an overview of the method development from an experimental method to a test guideline via application of GIVIMP (good in vitro method practice), standardization, validation to the regulatory adoption as an OECD test guidelines. Quandaries associated with the validation towards reference data from in vivo animal studies with limited accuracy and limited human relevance are discussed, as well as uncertainty and limitations arising from restricted applicability and technical and biological variance of the in vitro methods.This chapter provides an overview of human-derived in vitro models currently adopted as OECD test guidelines: From the first skin corrosion tests utilizing reconstructed human epidermis models (RhE), to models to test for skin irritation, phototoxicity, eye irritation, and skin sensitization. The latter is using a battery of different methods and defined approaches which are still under discussion for their regulatory adoption. They will be a vanguard of future applications of human-derived models in regulatory toxicology. RhEs for testing of genotoxicity and of dermal penetration and absorption, have been developed, underwent validation studies and may soon be adopted for regulatory use; these are included in this chapter.
- Published
- 2021
- Full Text
- View/download PDF