1. The wide integral field infrared spectrograph: commissioning results and on-sky performance
- Author
-
Ke Ma, Dennis Zaritsky, Moo Young Chun, R. Elliot Meyer, Joshua Eisner, Jason Grunhut, Stephen S. Eikenberry, Basil Blank, Dae-Sik Moon, Chueh Yi Chou, Suresh Sivanandam, Charles R. Henderson, Byeong-Gon Park, and Miranda Jarvis
- Subjects
Physics ,010308 nuclear & particles physics ,Etendue ,media_common.quotation_subject ,Milky Way ,Near-infrared spectroscopy ,Astrophysics ,01 natural sciences ,Galaxy ,law.invention ,Telescope ,Integral field spectrograph ,Sky ,law ,0103 physical sciences ,010303 astronomy & astrophysics ,Spectrograph ,media_common - Abstract
We have recently commissioned a novel infrared (0:9-1:7 μm) integral field spectrograph (IFS) called the Wide Integral Field Infrared Spectrograph (WIFIS). WIFIS is a unique instrument that offers a very large field-of-view (5000 x 2000) on the 2.3-meter Bok telescope at Kitt Peak, USA for seeing-limited observations at moderate spectral resolving power. The measured spatial sampling scale is ~ 1 x 1" and its spectral resolving power is R ~ 2; 500 and 3; 000 in the z J (0:9 - 1:35 μm) and Hshort (1:5 - 1:7 μm) modes, respectively. WIFIS's corresponding etendue is larger than existing near-infrared (NIR) IFSes, which are mostly designed to work with adaptive optics systems and therefore have very narrow fields. For this reason, this instrument is specifically suited for studying very extended objects in the near-infrared such as supernovae remnants, galactic star forming regions, and nearby galaxies, which are not easily accessible by other NIR IFSes. This enables scientific programs that were not originally possible, such as detailed surveys of a large number of nearby galaxies or a full accounting of nucleosynthetic yields of Milky Way supernova remnants. WIFIS is also designed to be easily adaptable to be used with larger telescopes. In this paper, we report on the overall performance characteristics of the instrument, which were measured during our commissioning runs in the second half of 2017. We present measurements of spectral resolving power, image quality, instrumental background, and overall efficiency and sensitivity of WIFIS and compare them with our design expectations. Finally, we present a few example observations that demonstrate WIFIS's full capability to carry out infrared imaging spectroscopy of extended objects, which is enabled by our custom data reduction pipeline.
- Published
- 2018
- Full Text
- View/download PDF