5 results on '"Pauciulo MW"'
Search Results
2. Correction to: Rare variant analysis of 4241 pulmonary arterial hypertension cases from an international consortium implicates FBLN2, PDGFD, and rare de novo variants in PAH.
- Author
-
Zhu N, Swietlik EM, Welch CL, Pauciulo MW, Hagen JJ, Zhou X, Guo Y, Karten J, Pandya D, Tilly T, Lutz KA, Martin JM, Treacy CM, Rosenzweig EB, Krishnan U, Coleman AW, Gonzaga-Jauregui C, Lawrie A, Trembath RC, Wilkins MR, Morrell NW, Shen Y, Gräf S, Nichols WC, and Chung WK
- Published
- 2021
- Full Text
- View/download PDF
3. Rare variant analysis of 4241 pulmonary arterial hypertension cases from an international consortium implicates FBLN2, PDGFD, and rare de novo variants in PAH.
- Author
-
Zhu N, Swietlik EM, Welch CL, Pauciulo MW, Hagen JJ, Zhou X, Guo Y, Karten J, Pandya D, Tilly T, Lutz KA, Martin JM, Treacy CM, Rosenzweig EB, Krishnan U, Coleman AW, Gonzaga-Jauregui C, Lawrie A, Trembath RC, Wilkins MR, Morrell NW, Shen Y, Gräf S, Nichols WC, and Chung WK
- Subjects
- Adolescent, Adult, Age of Onset, Aged, Alleles, Amino Acid Substitution, Calcium-Binding Proteins chemistry, Child, Child, Preschool, Extracellular Matrix Proteins chemistry, Female, Genotype, Humans, Lymphokines chemistry, Male, Middle Aged, Mutation, Phenotype, Platelet-Derived Growth Factor chemistry, Population Surveillance, United Kingdom epidemiology, United States epidemiology, Young Adult, Biomarkers, Calcium-Binding Proteins genetics, Extracellular Matrix Proteins genetics, Genetic Predisposition to Disease, Genetic Variation, Lymphokines genetics, Platelet-Derived Growth Factor genetics, Pulmonary Arterial Hypertension epidemiology, Pulmonary Arterial Hypertension etiology
- Abstract
Background: Pulmonary arterial hypertension (PAH) is a lethal vasculopathy characterized by pathogenic remodeling of pulmonary arterioles leading to increased pulmonary pressures, right ventricular hypertrophy, and heart failure. PAH can be associated with other diseases (APAH: connective tissue diseases, congenital heart disease, and others) but often the etiology is idiopathic (IPAH). Mutations in bone morphogenetic protein receptor 2 (BMPR2) are the cause of most heritable cases but the vast majority of other cases are genetically undefined., Methods: To identify new risk genes, we utilized an international consortium of 4241 PAH cases with exome or genome sequencing data from the National Biological Sample and Data Repository for PAH, Columbia University Irving Medical Center, and the UK NIHR BioResource - Rare Diseases Study. The strength of this combined cohort is a doubling of the number of IPAH cases compared to either national cohort alone. We identified protein-coding variants and performed rare variant association analyses in unrelated participants of European ancestry, including 1647 IPAH cases and 18,819 controls. We also analyzed de novo variants in 124 pediatric trios enriched for IPAH and APAH-CHD., Results: Seven genes with rare deleterious variants were associated with IPAH with false discovery rate smaller than 0.1: three known genes (BMPR2, GDF2, and TBX4), two recently identified candidate genes (SOX17, KDR), and two new candidate genes (fibulin 2, FBLN2; platelet-derived growth factor D, PDGFD). The new genes were identified based solely on rare deleterious missense variants, a variant type that could not be adequately assessed in either cohort alone. The candidate genes exhibit expression patterns in lung and heart similar to that of known PAH risk genes, and most variants occur in conserved protein domains. For pediatric PAH, predicted deleterious de novo variants exhibited a significant burden compared to the background mutation rate (2.45×, p = 2.5e-5). At least eight novel pediatric candidate genes carrying de novo variants have plausible roles in lung/heart development., Conclusions: Rare variant analysis of a large international consortium identified two new candidate genes-FBLN2 and PDGFD. The new genes have known functions in vasculogenesis and remodeling. Trio analysis predicted that ~ 15% of pediatric IPAH may be explained by de novo variants.
- Published
- 2021
- Full Text
- View/download PDF
4. Novel risk genes and mechanisms implicated by exome sequencing of 2572 individuals with pulmonary arterial hypertension.
- Author
-
Zhu N, Pauciulo MW, Welch CL, Lutz KA, Coleman AW, Gonzaga-Jauregui C, Wang J, Grimes JM, Martin LJ, He H, Shen Y, Chung WK, and Nichols WC
- Subjects
- Adult, Age of Onset, Aged, Biomarkers, Female, Gene Expression Profiling, Genetic Variation, Hemodynamics, Humans, Male, Middle Aged, Pulmonary Arterial Hypertension diagnosis, Pulmonary Arterial Hypertension physiopathology, Exome Sequencing, Exome, Genetic Predisposition to Disease, Genome-Wide Association Study, Pulmonary Arterial Hypertension genetics
- Abstract
Background: Group 1 pulmonary arterial hypertension (PAH) is a rare disease with high mortality despite recent therapeutic advances. Pathogenic remodeling of pulmonary arterioles leads to increased pulmonary pressures, right ventricular hypertrophy, and heart failure. Mutations in bone morphogenetic protein receptor type 2 and other risk genes predispose to disease, but the vast majority of non-familial cases remain genetically undefined., Methods: To identify new risk genes, we performed exome sequencing in a large cohort from the National Biological Sample and Data Repository for PAH (PAH Biobank, n = 2572). We then carried out rare deleterious variant identification followed by case-control gene-based association analyses. To control for population structure, only unrelated European cases (n = 1832) and controls (n = 12,771) were used in association tests. Empirical p values were determined by permutation analyses, and the threshold for significance defined by Bonferroni's correction for multiple testing., Results: Tissue kallikrein 1 (KLK1) and gamma glutamyl carboxylase (GGCX) were identified as new candidate risk genes for idiopathic PAH (IPAH) with genome-wide significance. We note that variant carriers had later mean age of onset and relatively moderate disease phenotypes compared to bone morphogenetic receptor type 2 variant carriers. We also confirmed the genome-wide association of recently reported growth differentiation factor (GDF2) with IPAH and further implicate T-box 4 (TBX4) with child-onset PAH., Conclusions: We report robust association of novel genes KLK1 and GGCX with IPAH, accounting for ~ 0.4% and 0.9% of PAH Biobank cases, respectively. Both genes play important roles in vascular hemodynamics and inflammation but have not been implicated in PAH previously. These data suggest new genes, pathogenic mechanisms, and therapeutic targets for this lethal vasculopathy.
- Published
- 2019
- Full Text
- View/download PDF
5. Rare variants in SOX17 are associated with pulmonary arterial hypertension with congenital heart disease.
- Author
-
Zhu N, Welch CL, Wang J, Allen PM, Gonzaga-Jauregui C, Ma L, King AK, Krishnan U, Rosenzweig EB, Ivy DD, Austin ED, Hamid R, Pauciulo MW, Lutz KA, Nichols WC, Reid JG, Overton JD, Baras A, Dewey FE, Shen Y, and Chung WK
- Subjects
- Adolescent, Adult, Amino Acid Sequence, Child, Child, Preschool, Female, Genetic Predisposition to Disease, Humans, Infant, Male, Risk Factors, SOXF Transcription Factors chemistry, Genetic Variation, Heart Defects, Congenital complications, Heart Defects, Congenital genetics, Hypertension, Pulmonary complications, Hypertension, Pulmonary genetics, SOXF Transcription Factors genetics
- Abstract
Background: Pulmonary arterial hypertension (PAH) is a rare disease characterized by distinctive changes in pulmonary arterioles that lead to progressive pulmonary arterial pressures, right-sided heart failure, and a high mortality rate. Up to 30% of adult and 75% of pediatric PAH cases are associated with congenital heart disease (PAH-CHD), and the underlying etiology is largely unknown. There are no known major risk genes for PAH-CHD., Methods: To identify novel genetic causes of PAH-CHD, we performed whole exome sequencing in 256 PAH-CHD patients. We performed a case-control gene-based association test of rare deleterious variants using 7509 gnomAD whole genome sequencing population controls. We then screened a separate cohort of 413 idiopathic and familial PAH patients without CHD for rare deleterious variants in the top association gene., Results: We identified SOX17 as a novel candidate risk gene (p = 5.5e-7). SOX17 is highly constrained and encodes a transcription factor involved in Wnt/β-catenin and Notch signaling during development. We estimate that rare deleterious variants contribute to approximately 3.2% of PAH-CHD cases. The coding variants identified include likely gene-disrupting (LGD) and deleterious missense, with most of the missense variants occurring in a highly conserved HMG-box protein domain. We further observed an enrichment of rare deleterious variants in putative targets of SOX17, many of which are highly expressed in developing heart and pulmonary vasculature. In the cohort of PAH without CHD, rare deleterious variants of SOX17 were observed in 0.7% of cases., Conclusions: These data strongly implicate SOX17 as a new risk gene contributing to PAH-CHD as well as idiopathic/familial PAH. Replication in other PAH cohorts and further characterization of the clinical phenotype will be important to confirm the precise role of SOX17 and better estimate the contribution of genes regulated by SOX17.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.