5 results on '"Jordana T Bell"'
Search Results
2. Epigenetics of discordant monozygotic twins: implications for disease
- Author
-
Juan E. Castillo-Fernandez, Jordana T. Bell, and Tim D. Spector
- Subjects
Genetics ,education.field_of_study ,business.industry ,Population ,Beckwith–Wiedemann syndrome ,Disease ,Environmental exposure ,Review ,Biology ,medicine.disease ,Human genetics ,3. Good health ,medicine ,Molecular Medicine ,Major depressive disorder ,Genetics(clinical) ,Epigenetics ,Personalized medicine ,business ,education ,Molecular Biology ,Genetics (clinical) - Abstract
Monozygotic (MZ) twins share nearly all of their genetic variants and many similar environments before and after birth. However, they can also show phenotypic discordance for a wide range of traits. Differences at the epigenetic level may account for such discordances. It is well established that epigenetic states can contribute to phenotypic variation, including disease. Epigenetic states are dynamic and potentially reversible marks involved in gene regulation, which can be influenced by genetics, environment, and stochastic events. Here, we review advances in epigenetic studies of discordant MZ twins, focusing on disease. The study of epigenetics and disease using discordant MZ twins offers the opportunity to control for many potential confounders encountered in general population studies, such as differences in genetic background, early-life environmental exposure, age, gender, and cohort effects. Recently, analysis of disease-discordant MZ twins has been successfully used to study epigenetic mechanisms in aging, cancer, autoimmune disease, psychiatric, neurological, and multiple other traits. Epigenetic aberrations have been found in a range of phenotypes, and challenges have been identified, including sampling time, tissue specificity, validation, and replication. The results have relevance for personalized medicine approaches, including the identification of prognostic, diagnostic, and therapeutic targets. The findings also help to identify epigenetic markers of environmental risk and molecular mechanisms involved in disease and disease progression, which have implications both for understanding disease and for future medical research.
- Published
- 2014
- Full Text
- View/download PDF
3. Signatures of early frailty in the gut microbiota
- Author
-
Matthew A, Jackson, Matt, Jackson, Ian B, Jeffery, Michelle, Beaumont, Jordana T, Bell, Andrew G, Clark, Ruth E, Ley, Paul W, O'Toole, Tim D, Spector, and Claire J, Steves
- Subjects
Adult ,Aging ,Frail Elderly ,Twins ,Gut microbiota ,Feces ,Risk Factors ,RNA, Ribosomal, 16S ,Genetics ,Humans ,Genetics(clinical) ,Molecular Biology ,Phylogeny ,Aged ,Aged, 80 and over ,Population ageing ,Frailty ,Bacteria ,Sequence Analysis, RNA ,Research ,Diagnostic surveillance ,Intervention studies ,Middle Aged ,Gastrointestinal Microbiome ,Molecular Medicine ,Female ,Erratum - Abstract
Background Frailty is arguably the biggest problem associated with population ageing, and associates with gut microbiome composition in elderly and care-dependent individuals. Here we characterize frailty associations with the gut microbiota in a younger community dwelling population, to identify targets for intervention to encourage healthy ageing. Method We analysed 16S rRNA gene sequence data derived from faecal samples obtained from 728 female twins. Frailty was quantified using a frailty index (FI). Mixed effects models were used to identify associations with diversity, operational taxonomic units (OTUs) and taxa. OTU associations were replicated in the Eldermet cohort. Phenotypes were correlated with modules of OTUs collapsed by co-occurrence. Results Frailty negatively associated with alpha diversity of the gut microbiota. Models considering a number of covariates identified 637 OTUs associated with FI. Twenty-two OTU associations were significant independent of alpha diversity. Species more abundant with frailty included Eubacterium dolichum and Eggerthella lenta. A Faecalibacterium prausnitzii OTU was less abundant in frailer individuals, and retained significance in discordant twin analysis. Sixty OTU associations were replicated in the Eldermet cohort. OTU co-occurrence modules had mutually exclusive associations between frailty and alpha diversity. Conclusions There was a striking negative association between frailty and gut microbiota diversity, underpinned by specific taxonomic associations. Whether these relationships are causal or consequential is unknown. Nevertheless, they represent targets for diagnostic surveillance, or for intervention studies to improve vitality in ageing. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0262-7) contains supplementary material, which is available to authorized users.
- Full Text
- View/download PDF
4. Adipose methylome integrative-omic analyses reveal genetic and dietary metabolic health drivers and insulin resistance classifiers
- Author
-
Colette Christiansen, Max Tomlinson, Melissa Eliot, Emma Nilsson, Ricardo Costeira, Yujing Xia, Sergio Villicaña, Olatz Mompeo, Philippa Wells, Juan Castillo-Fernandez, Louis Potier, Marie-Claude Vohl, Andre Tchernof, Julia El-Sayed Moustafa, Cristina Menni, Claire J. Steves, Karl Kelsey, Charlotte Ling, Elin Grundberg, Kerrin S. Small, and Jordana T. Bell
- Subjects
DNA methylation ,Visceral fat ,Adiposity ,Integrative omics ,Medicine ,Genetics ,QH426-470 - Abstract
Abstract Background There is considerable evidence for the importance of the DNA methylome in metabolic health, for example, a robust methylation signature has been associated with body mass index (BMI). However, visceral fat (VF) mass accumulation is a greater risk factor for metabolic disease than BMI alone. In this study, we dissect the subcutaneous adipose tissue (SAT) methylome signature relevant to metabolic health by focusing on VF as the major risk factor of metabolic disease. We integrate results with genetic, blood methylation, SAT gene expression, blood metabolomic, dietary intake and metabolic phenotype data to assess and quantify genetic and environmental drivers of the identified signals, as well as their potential functional roles. Methods Epigenome-wide association analyses were carried out to determine visceral fat mass-associated differentially methylated positions (VF-DMPs) in SAT samples from 538 TwinsUK participants. Validation and replication were performed in 333 individuals from 3 independent cohorts. To assess functional impacts of the VF-DMPs, the association between VF and gene expression was determined at the genes annotated to the VF-DMPs and an association analysis was carried out to determine whether methylation at the VF-DMPs is associated with gene expression. Further epigenetic analyses were carried out to compare methylation levels at the VF-DMPs as the response variables and a range of different metabolic health phenotypes including android:gynoid fat ratio (AGR), lipids, blood metabolomic profiles, insulin resistance, T2D and dietary intake variables. The results from all analyses were integrated to identify signals that exhibit altered SAT function and have strong relevance to metabolic health. Results We identified 1181 CpG positions in 788 genes to be differentially methylated with VF (VF-DMPs) with significant enrichment in the insulin signalling pathway. Follow-up cross-omic analysis of VF-DMPs integrating genetics, gene expression, metabolomics, diet, and metabolic traits highlighted VF-DMPs located in 9 genes with strong relevance to metabolic disease mechanisms, with replication of signals in FASN, SREBF1, TAGLN2, PC and CFAP410. PC methylation showed evidence for mediating effects of diet on VF. FASN DNA methylation exhibited putative causal effects on VF that were also strongly associated with insulin resistance and methylation levels in FASN better classified insulin resistance (AUC=0.91) than BMI or VF alone. Conclusions Our findings help characterise the adiposity-associated methylation signature of SAT, with insights for metabolic disease risk.
- Published
- 2022
- Full Text
- View/download PDF
5. Increased DNA methylation variability in rheumatoid arthritis-discordant monozygotic twins
- Author
-
Amy P. Webster, Darren Plant, Simone Ecker, Flore Zufferey, Jordana T. Bell, Andrew Feber, Dirk S. Paul, Stephan Beck, Anne Barton, Frances M. K. Williams, and Jane Worthington
- Subjects
Autoimmune disease ,Rheumatoid arthritis ,Epigenetics ,DNA methylation ,Twins ,Medicine ,Genetics ,QH426-470 - Abstract
Abstract Background Rheumatoid arthritis is a common autoimmune disorder influenced by both genetic and environmental factors. Epigenome-wide association studies can identify environmentally mediated epigenetic changes such as altered DNA methylation, which may also be influenced by genetic factors. To investigate possible contributions of DNA methylation to the aetiology of rheumatoid arthritis with minimum confounding genetic heterogeneity, we investigated genome-wide DNA methylation in disease-discordant monozygotic twin pairs. Methods Genome-wide DNA methylation was assessed in 79 monozygotic twin pairs discordant for rheumatoid arthritis using the HumanMethylation450 BeadChip array (Illumina). Discordant twins were tested for both differential DNA methylation and methylation variability between rheumatoid arthritis and healthy twins. The methylation variability signature was then compared with methylation variants from studies of other autoimmune diseases and with an independent healthy population. Results We have identified a differentially variable DNA methylation signature that suggests multiple stress response pathways may be involved in the aetiology of the disease. This methylation variability signature also highlighted potential epigenetic disruption of multiple RUNX3 transcription factor binding sites as being associated with disease development. Comparison with previously performed epigenome-wide association studies of rheumatoid arthritis and type 1 diabetes identified shared pathways for autoimmune disorders, suggesting that epigenetics plays a role in autoimmunity and offering the possibility of identifying new targets for intervention. Conclusions Through genome-wide analysis of DNA methylation in disease-discordant monozygotic twins, we have identified a differentially variable DNA methylation signature, in the absence of differential methylation in rheumatoid arthritis. This finding supports the importance of epigenetic variability as an emerging component in autoimmune disorders.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.