1. Bone morphogenetic protein 15 and growth differentiation factor 9 expression in the ovary of European sea bass (Dicentrarchus labrax): cellular localization, developmental profiles, and response to unilateral ovariectomy.
- Author
-
García-López Á, Sánchez-Amaya MI, Halm S, Astola A, and Prat F
- Subjects
- Animals, Bass growth & development, Bass metabolism, Bass surgery, Bone Morphogenetic Protein 15 metabolism, Europe, Female, Gene Expression Profiling, Gene Expression Regulation, Developmental, Growth Differentiation Factor 9 metabolism, Ovarian Follicle cytology, Ovarian Follicle metabolism, Ovary growth & development, Ovulation genetics, Ovulation metabolism, Tissue Distribution, Bass genetics, Bone Morphogenetic Protein 15 genetics, Growth Differentiation Factor 9 genetics, Ovariectomy veterinary, Ovary metabolism
- Abstract
Vertebrate oocytes actively contribute to follicle development by secreting a variety of growth factors, among which bone morphogenetic protein 15 (BMP15/Bmp15) and growth differentiation factor 9 (GDF9/Gdf9) have been paid particular attention. In the present study, we describe the cellular localization, the developmental profiles, and the response to unilateral ovariectomy (a procedure implying the surgical removal of one of the ovaries) of protein and mRNA steady-state levels of Bmp15 and Gdf9 in the ovary of European sea bass, an important fish species for marine aquaculture industry. In situ hybridization and immunohistochemistry demonstrated that the oocyte is the main production site of Bmp15 and Gdf9 in European sea bass ovary. During oocyte development, Bmp15 protein expression started to be detected only from the lipid vesicle stage onwards but not in primary pre-vitellogenic (i.e. perinucleolar) oocytes as the bmp15 mRNA already did. Gdf9 protein and gdf9 mRNA expression were both detected in primary perinucleolar oocytes and followed similar decreasing patterns thereafter. Unilateral ovariectomy induced a full compensatory growth of the remaining ovary in the 2-month period following surgery (Á. García-López, M.I. Sánchez-Amaya, C.R. Tyler, F. Prat 2011). The compensatory growth elicited different changes in the expression levels of mRNA and protein of both factors, although the involvement of Bmp15 and Gdf9 in the regulatory network orchestrating such process remains unclear at present. Altogether, our results establish a solid base for further studies focused on elucidating the specific functions of Bmp15 and Gdf9 during primary and secondary oocyte growth in European sea bass., (Copyright © 2011 Elsevier Inc. All rights reserved.)
- Published
- 2011
- Full Text
- View/download PDF