1. Identification of a novel TNNI3 synonymous variant causing intron retention in autosomal recessive dilated cardiomyopathy.
- Author
-
Yu T, Yan F, Xu Y, Hunag Y, Gong H, Zhao P, Sun D, Zhang Y, Zhang F, and He X
- Subjects
- Female, Humans, Infant, Heart, Introns genetics, Pedigree, Silent Mutation, Cardiomyopathy, Dilated genetics, Heart Failure genetics
- Abstract
Background: Dilated cardiomyopathy type 2A (DCM2A, MIM: #611880) is a rare autosomal recessive heart disease leading to heart failure and sudden cardiac death. However, the causative role of TNNI3 in DCM2A is still questioned due to few cases reported and the conflicting molecular biological evidence., Methods: Trio whole-exome sequencing (trio-WES) was performed in a Chinese family with dilated cardiomyopathy. Sanger sequencing and real-time quantitative PCR were used to confirm the variants identified. Expression outcome caused by the synonymous mutation was validated by minigene splicing analyses., Results: The one-year-old girl presented severe left ventricular enlargement and significantly reduced left ventricular systolic function and she died of respiratory and heart failure soon after her diagnosis. Trio-WES revealed a compound heterozygous variants of TNNI3, a novel c.24G>A (p.Ala8Ala) (NM_000363.4) in exon 2 and a deletion of entire gene. Minigene splicing analyses showed it led to an intron retention (c.24 + 1_24 + 45ins) by intron 2 cryptic splicing., Conclusions: Our study describes and characterizes a synonymous mutation in TNNI3 gene, supporting the clinical diagnosis of an autosomal recessive DCM. Our study emphasizes the importance of functional analysis to assess the potential pathogenicity of synonymous mutations, especially when the synonymous variants are not annotated as benign., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022. Published by Elsevier B.V.)
- Published
- 2023
- Full Text
- View/download PDF