7 results on '"Mengmeng Duan"'
Search Results
2. Genome-wide identification and characterization of the NPF genes provide new insight into low nitrogen tolerance in Setaria
- Author
-
Jinjin Cheng, Helin Tan, Meng Shan, Mengmeng Duan, Ling Ye, Yulu Yang, Lu He, Huimin Shen, Zhirong Yang, and Xingchun Wang
- Subjects
Setaria ,nitrate/peptide transporter ,expression profile ,natural variation ,three-dimensional structure ,NRT1.1 ,Plant culture ,SB1-1110 - Abstract
IntroductionNitrogen (N) is essential for plant growth and yield production and can be taken up from soil in the form of nitrate or peptides. The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) genes play important roles in the uptake and transportation of these two forms of N.MethodsBioinformatic analysis was used to identify and characterize the NPF genes in Setaria. RNA-seq was employed to analyze time-series low nitrate stress response of the SiNPF genes. Yeast and Arabidopsis mutant complementation were used to test the nitrate transport ability of SiNRT1.1B1 and SiNRT1.1B2.ResultsWe identified 92 and 88 putative NPF genes from foxtail millet (Setaria italica L.) and its wild ancestor green foxtail (Setaria viridis L.), respectively. These NPF genes were divided into eight groups according to their sequence characteristics and phylogenetic relationship, with similar intron-exon structure and motifs in the same subfamily. Twenty-six tandem duplication and 13 segmental duplication events promoted the expansion of SiNPF gene family. Interestingly, we found that the tandem duplication of the SiNRT1.1B gene might contribute to low nitrogen tolerance of foxtail millet. The gene expression atlas showed that the SiNPFs were divided into two major clusters, which were mainly expressed in root and the above ground tissues, respectively. Time series transcriptomic analysis further revealed the response of these SiNPF genes to short- and long- time low nitrate stress. To provide natural variation of gene information, we carried out a haplotype analysis of these SiNPFs and identified 2,924 SNPs and 400 InDels based on the re-sequence data of 398 foxtail millet accessions. We also predicted the three-dimensional structure of the 92 SiNPFs and found that the conserved proline 492 residues were not in the substrate binding pocket. The interactions of SiNPF proteins with NO3− were analyzed using molecular docking and the pockets were then identified. We found that the SiNPFs NO3− binding energy ranged from-3.4 to -2.1 kcal/mol.DiscussionTaken together, our study provides a comprehensive understanding of the NPF gene family in Setaria and will contribute to function dissection of these genes for crop breeding aimed at improving high nitrogen use efficiency.
- Published
- 2022
- Full Text
- View/download PDF
3. Effect of Piriformospora indica-Induced Systemic Resistance and Basal Immunity Against Rhizoctonia cerealis and Fusarium graminearum in Wheat
- Author
-
Liang Li, Nannan Guo, Yu Feng, Mengmeng Duan, and Chunhui Li
- Subjects
Piriformospora indica ,differentially expressed gene (DEGs) ,sharp eyesspot ,root rot ,reprogram ,Plant culture ,SB1-1110 - Abstract
Wheat is among the top 10 and most widely grown crops in the world. However, wheat is often infected with many soil-borne diseases, including sharp eyespot, mainly caused by the necrotrophic fungus Rhizoctonia cerealis, and Fusarium head blight (FHB), caused by Fusarium graminearum, resulting in reduced production. Piriformospora indica is a root endophytic fungus with a wide range of host plants, which increases their growth and tolerance to biotic and abiotic stresses. In this study, the capability of P. indica to protect wheat seedlings against R. cerealis and F. graminearum was investigated at the physiological, biochemical, and molecular levels. Our results showed that P. indica significantly reduced the disease progress on wheat caused by F. graminearum and R. cerealis in vivo, but not showed any antagonistic effect on F. graminearum and R. cerealis in vitro. Additionally, P. indica can induce systemic resistance by elevating H2O2 content, antioxidase activity, relative water content (RWC), and membrane stability index (MSI) compared to the plants only inoculated with F. graminearum or R. cerealis and control. RNA-seq suggested that transcriptome changes caused by F. graminearum were more severe than those caused by R. cerealis. The number of differentially expressed genes (DEGs) in the transcriptome can be reduced by the addition of P. indica: for F. graminearum reduced by 18% and for R. cerealis reduced 58%. The DEGs related to disease resistance, such as WRKY and MAPK, were upregulated by P. indica colonization. The data further revealed that the transcriptional resistance to F. graminearum and R. cerealis mediated by P. indica is quite different.
- Published
- 2022
- Full Text
- View/download PDF
4. Identification of Optimal Reference Genes for Expression Analysis in Radish (Raphanus sativus L.) and Its Relatives Based on Expression Stability
- Author
-
Mengmeng Duan, Jinglei Wang, Xiaohui Zhang, Haohui Yang, Haiping Wang, Yang Qiu, Jiangping Song, Yangdong Guo, and Xixiang Li
- Subjects
radish ,Chinese cabbage ,distant hybrid ,organs ,stress ,pistil development ,Plant culture ,SB1-1110 - Abstract
Radish (Raphanus sativus) is an important cruciferous root crop with a close relationship to Chinese cabbage (Brassica rapa). RT-qPCR is used extensively to evaluate the expression levels of target genes, and accurate measurement of target gene expression with this method is determined by the valid reference genes used for data nomalization in different experimental conditions. Screening for appropriate reference genes with stable expression based on RT-qPCR data is important for gene expression and functional analysis research in radish and its relatives. However, many researches have thought that almost no single reference gene is widely suitable for all experimental conditions, and few researchers have paid attention to the validation of reference genes in radish gene expression analysis. In the present study, 12 candidate reference genes were selected for analysis. Their expression in 28 samples, including 20 radish samples from different organs and conditions, four Chinese cabbage organs and four organs of their distant hybrid, was assessed by RT-qPCR and then five software tools—ΔCt, geNorm, NormFinder, BestKeeper and RefFinder—were used to compare their expression stability. The results showed that the most suitable reference genes were different in different organs and conditions. GAPDH, DSS1, and UP2 were optimal reference genes for gene expression analysis in all organs and conditions in radish. UPR, GSNOR1, and ACTIN2/7 were the most stable reference genes in different radish organs. UP2 and GAPDH were suitable reference genes for radish pistil development studies. RPII, UBC9, and GAPDH had the most stable expression in radish under various stresses. DSS1, UP2, and TEF2 were the optimal reference genes for Chinese cabbage organs, whereas TUA was optimal for the distant hybrid. UP2, and TEF2 were appropriate reference genes for all of the samples together. The optimal reference genes we identified, UP2, GAPDH, UPR, and GSNOR1 were verified by normalizing the expression patterns of YAB3, RPL, and FUL. These results will provide important information for selecting target reference genes in different research contexts and improve the accuracy and precision of gene expression analysis for radish, Chinese cabbage and their distant hybrid.
- Published
- 2017
- Full Text
- View/download PDF
5. Effect of
- Author
-
Liang, Li, Nannan, Guo, Yu, Feng, Mengmeng, Duan, and Chunhui, Li
- Abstract
Wheat is among the top 10 and most widely grown crops in the world. However, wheat is often infected with many soil-borne diseases, including sharp eyespot, mainly caused by the necrotrophic fungus
- Published
- 2021
6. De novo Transcriptome Analysis of Sinapis alba in Revealing the Glucosinolate and Phytochelatin Pathways
- Author
-
Jiangping Song, Xixiang Li, Tongjin Liu, Xiaohui Zhang, and Mengmeng Duan
- Subjects
0106 biological sciences ,0301 basic medicine ,Sinapis ,Plant Science ,Biology ,lcsh:Plant culture ,01 natural sciences ,Transcriptome ,03 medical and health sciences ,chemistry.chemical_compound ,deep sequencing ,lcsh:SB1-1110 ,KEGG ,Gene ,SSR marker ,Original Research ,food and beverages ,glucosinolate ,phytochelatin ,biology.organism_classification ,Metabolic pathway ,030104 developmental biology ,chemistry ,Biochemistry ,Glucosinolate ,Sinapis alba ,Plant hormone ,Phytochelatin ,transcriptome ,010606 plant biology & botany - Abstract
Sinapis alba is an important condiment crop and can also be used as a phytoremediation plant. Though it has important economic and agronomic values, sequence data, and the genetic tools are still rare in this plant. In the present study, a de novo transcriptome based on the transcriptions of leaves, stems, and roots was assembled for S. alba for the first time. The transcriptome contains 47,972 unigenes with a mean length of 1185 nt and an N50 of 1672 nt. Among these unigenes, 46,535 (97%) unigenes were annotated by at least one of the following databases: NCBI non-redundant (Nr), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, Gene Ontology (GO), and Clusters of Orthologous Groups of proteins (COGs). The tissue expression pattern profiles revealed that 3489, 1361, and 8482 unigenes were predominantly expressed in the leaves, stems, and roots of S. alba, respectively. Genes predominantly expressed in the leaf were enriched in photosynthesis- and carbon fixation-related pathways. Genes predominantly expressed in the stem were enriched in not only pathways related to sugar, ether lipid, and amino acid metabolisms but also plant hormone signal transduction and circadian rhythm pathways, while the root-dominant genes were enriched in pathways related to lignin and cellulose syntheses, involved in plant-pathogen interactions, and potentially responsible for heavy metal chelating, and detoxification. Based on this transcriptome, 14,727 simple sequence repeats (SSRs) were identified, and 12,830 pairs of primers were developed for 2522 SSR-containing unigenes. Additionally, the glucosinolate (GSL) and phytochelatin metabolic pathways, which give the characteristic flavor and the heavy metal tolerance of this plant, were intensively analyzed. The genes of aliphatic GSLs pathway were predominantly expressed in roots. The absence of aliphatic GSLs in leaf tissues was due to the shutdown of BCAT4, MAM1, and CYP79F1 expressions. Glutathione was extensively converted into phytochelatin in roots, but it was actively converted to the oxidized form in leaves, indicating the different mechanisms in the two tissues. This transcriptome will not only benefit basic research and molecular breeding of S. alba but also be useful for the molecular-assisted transfer of beneficial traits to other crops.
- Published
- 2016
- Full Text
- View/download PDF
7. De novo Transcriptome Analysis of Sinapis alba in Revealing the Glucosinolate and Phytochelatin Pathways.
- Author
-
Xiaohui Zhang, Tongjin Liu, Mengmeng Duan, Jiangping Song, Xixiang Li, Lijun Chai, and Yuyang Zhang
- Subjects
WHITE mustard ,GLUCOSINOLATES ,PHYTOCHELATINS - Abstract
Sinapis alba is an important condiment crop and can also be used as a phytoremediation plant. Though it has important economic and agronomic values, sequence data, and the genetic tools are still rare in this plant. In the present study, a de novo transcriptome based on the transcriptions of leaves, stems, and roots was assembled for S. alba for the first time. The transcriptome contains 47,972 unigenes with a mean length of 1185 nt and an N50 of 1672 nt. Among these unigenes, 46,535 (97%) unigenes were annotated by at least one of the following databases: NCBI non-redundant (Nr), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, Gene Ontology (GO), and Clusters of Orthologous Groups of proteins (COGs). The tissue expression pattern profiles revealed that 3489, 1361, and 8482 unigenes were predominantly expressed in the leaves, stems, and roots of S. alba, respectively. Genes predominantly expressed in the leaf were enriched in photosynthesis- and carbon fixation-related pathways. Genes predominantly expressed in the stem were enriched in not only pathways related to sugar, ether lipid, and amino acid metabolisms but also plant hormone signal transduction and circadian rhythm pathways, while the root-dominant genes were enriched in pathways related to lignin and cellulose syntheses, involved in plant-pathogen interactions, and potentially responsible for heavy metal chelating, and detoxification. Based on this transcriptome, 14,727 simple sequence repeats (SSRs) were identified, and 12,830 pairs of primers were developed for 2522 SSR-containing unigenes. Additionally, the glucosinolate (GSL) and phytochelatin metabolic pathways, which give the characteristic flavor and the heavy metal tolerance of this plant, were intensively analyzed. The genes of aliphatic GSLs pathway were predominantly expressed in roots. The absence of aliphatic GSLs in leaf tissues was due to the shutdown of BCAT4, MAM1, and CYP79F1 expressions. Glutathione was extensively converted into phytochelatin in roots, but it was actively converted to the oxidized form in leaves, indicating the different mechanisms in the two tissues. This transcriptome will not only benefit basic research and molecular breeding of S. alba but also be useful for the molecular-assisted transfer of beneficial traits to other crops. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.