In the past decade, the use of wearable medical devices has been a great breakthrough in clinical practice, trials, and research. In the Parkinson's disease field, clinical evaluation is time limited, and healthcare professionals need to rely on retrospective data collected through patients' self-filled diaries and administered questionnaires. As this often leads to inaccurate evaluations, a more objective system for symptom monitoring in a patient's daily life is claimed. In this regard, the use of wearable medical devices is crucial. This study aims at presenting a review on STAT-ON TM , a wearable medical device Class IIa, which provides objective information on the distribution and severity of PD motor symptoms in home environments. The sensor analyzes inertial signals, with a set of validated machine learning algorithms running in real time. The device was developed for 12 years, and this review aims at gathering all the results achieved within this time frame. First, a compendium of the complete journey of STAT-ON TM since 2009 is presented, encompassing different studies and developments in funded European and Spanish national projects. Subsequently, the methodology of database construction and machine learning algorithms design and development is described. Finally, clinical validation and external studies of STAT-ON TM are presented., Competing Interests: DR-M, JCab, CP-L, AC, AS, JCal, MP, and AR-M are shareholders of Sense4Care, the company that markets STAT-ON. DR-M, JCal, MP, and CC are employed by Sense4Care., (Copyright © 2022 Rodríguez-Martín, Cabestany, Pérez-López, Pie, Calvet, Samà, Capra, Català and Rodríguez-Molinero.)