318 results on '"Phage"'
Search Results
2. Characterization and genomic analysis of a lytic Stenotrophomonas maltophilia short-tailed phage A1432 revealed a new genus of the family Mesyanzhinovviridae.
- Author
-
Shixia Li, Man Xu, Deying Yang, Mei Yang, Hejing Wu, Xuelian Li, Changzhou Yang, Zheng Fang, Qingshan Wu, Leitao Tan, Wei Xiao, and Qingbei Weng
- Subjects
STENOTROPHOMONAS maltophilia ,GENOMICS ,KARST ,DNA polymerases ,TRANSMISSION electron microscopy - Abstract
Stenotrophomonas maltophilia (S. maltophilia) is an emerging opportunistic pathogen that exhibits resistant to a majority of commonly used antibiotics. Phages have the potential to serve as an alternative treatment for S. maltophilia infections. In this study, a lytic phage, A1432, infecting S. maltophilia YCR3A-1, was isolated and characterized from a karst cave. Transmission electron microscopy revealed that phage A1432 possesses an icosahedral head and a shorter tail. Phage A1432 demonstrated a narrow host range, with an optimal multiplicity of infection of 0.1. The one-step growth curve indicated a latent time of 10 min, a lysis period of 90 min, a burst size of 43.2 plaque-forming units per cell. In vitro bacteriolytic activity test showed that phage A1432 was capable to inhibit the growth of S. maltophilia YCR3A-1 in an MOI-dependent manner after 2 h of co-culture. BLASTn analysis showed that phage A1432 genome shares the highest similarity (81.46%) with Xanthomonas phage Xoo-sp2 in the NCBI database, while the query coverage was only 37%. The phage contains double-stranded DNA with a genome length of 61,660 bp and a GC content of 61.92%. It is predicted to have 79 open reading frames and one tRNA, with no virulence or antibiotic resistance genes. Phylogenetic analysis using terminase large subunit and DNA polymerase indicated that phage A1432 clustered with members of the Bradleyvirinae subfamily but diverged into a distinct branch. Further phylogenetic comparison analysis using Average Nucleotide Identity, proteomic phylogenetic analysis, genomic network analysis confirmed that phage A1432 belongs to a novel genus within the Bradleyvirinae subfamily, Mesyanzhinovviridae family. Additionally, phylogenetic analysis of the so far isolated S. maltophilia phages revealed significant genetic diversity among these phages. The results of this research will contribute valuable information for further studies on their morphological and genetic diversity, will aid in elucidating the evolutionary mechanisms that give rise to them. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. Investigating Propionibacterium acnes antibiotic susceptibility and response to bacteriophage in vitro and in vivo.
- Author
-
Ruixing Yu, Lingyun Yu, Xiaoli Ning, and Yong Cui
- Subjects
CUTIBACTERIUM acnes ,ANTIBIOTICS ,ERYTHROMYCIN ,ACNE ,CLARITHROMYCIN ,BACTERIOPHAGES - Abstract
Introduction: A total of 94 Propionibacterium acnes (P. acnes) isolates were obtained from a hospital in Beijing to evaluate their susceptibility to erythromycin, clarithromycin, doxycycline, and minocycline. As well as the determination of the effectiveness of P. acnes phages in vitro and in P. acnes-induced lesions mouse model. Methods: Patients with acne vulgaris (AV) were enrolled from August 2021 to October 2022. Standard methods were employed for specimen collection, culture, and identification of P. acnes. Susceptibility testing was conducted using E-strips for erythromycin, clarithromycin, minocycline, and doxycycline. Phage culture and identification followed standard procedures. A mouse model with P. acnes-induced skin lesions was established, and data was analyzed using X² test. Results: The results showed that all isolates were susceptible to minocycline and doxycycline, while 53 (56.4%) and 52 (55.3%) isolates were susceptible to erythromycin and clarithromycin, respectively. Interestingly, younger patients and those with lower acne severity exhibited reduced resistance. Phage cleavage rates ranged from 88.30 to 93.60%. Multilocus sequence typing (MLST) analysis was conducted on eight randomly selected P. acnes isolates, and the IA-2 subtype was used in experiments to address P. acnes-induced lesions in mice. Phage therapy proved effective in this model. Discussion: This study highlights the high susceptibility of P. acnes to doxycycline and tetracycline, while erythromycin and clarithromycin exhibited elevated resistance. Additionally, P. acnes phages demonstrated high cleavage rates and potential effectiveness in treating P. acnes-induced lesions. These findings suggest promising avenues for further exploration of phage therapy in acne treatment. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. Tools and methodology to in silico phage discovery in freshwater environments.
- Author
-
Dias Dantas, Carlos Willian, Tavares Martins, David, Guimarães Nogueira, Wylerson, Cardenas Alegria, Oscar Victor, and Jucá Ramos, Rommel Thiago
- Subjects
FRESH water ,BACTERIOPHAGES ,BIOFILMS ,WATER currents ,BACTERIAL evolution ,SEWAGE ,PATHOGENIC bacteria - Abstract
Freshwater availability is essential, and its maintenance has become an enormous challenge. Due to population growth and climate changes, freshwater sources are becoming scarce, imposing the need for strategies for its reuse. Currently, the constant discharge of waste into water bodies from human activities leads to the dissemination of pathogenic bacteria, negatively impacting water quality from the source to the infrastructure required for treatment, such as the accumulation of biofilms. Current water treatment methods cannot keep pace with bacterial evolution, which increasingly exhibits a profile of multidrug resistance to antibiotics. Furthermore, using more powerful disinfectants may affect the balance of aquatic ecosystems. Therefore, there is a need to explore sustainable ways to control the spreading of pathogenic bacteria. Bacteriophages can infect bacteria and archaea, hijacking their host machinery to favor their replication. They are widely abundant globally and provide a biological alternative to bacterial treatment with antibiotics. In contrast to common disinfectants and antibiotics, bacteriophages are highly specific, minimizing adverse effects on aquatic microbial communities and offering a lower cost-benefit ratio in production compared to antibiotics. However, due to the difficulty involving cultivating and identifying environmental bacteriophages, alternative approaches using NGS metagenomics in combination with some bioinformatic tools can help identify new bacteriophages that can be useful as an alternative treatment against resistant bacteria. In this review, we discuss advances in exploring the virome of freshwater, as well as current applications of bacteriophages in freshwater treatment, along with current challenges and future perspectives. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
5. Role of hypothetical protein PA1-LRP in antibacterial activity of endolysin from a new Pantoea phage PA1
- Author
-
Ye Tian, Xinyan Xu, Munazza Ijaz, Ying Shen, Muhammad Shafiq Shahid, Temoor Ahmed, Hayssam M. Ali, Chengqi Yan, Chunyan Gu, Jianfei Lu, Yanli Wang, Gabrijel Ondrasek, and Bin Li
- Subjects
phage ,endolysin ,lysis ,novel lysed protein ,fusion expression ,Microbiology ,QR1-502 - Abstract
IntroductionPantoea ananatis has emerged as a significant plant pathogen affecting various crops worldwide, causing substantial economic losses. Bacteriophages and their endolysins offer promising alternatives for controlling bacterial infections, addressing the growing concerns of antibiotic resistance.MethodsThis study isolated and characterized the Pantoea phage PA1 and investigated the role of PA1-LRP in directly damaging bacteria and assisting endolysin PA1-Lys in cell lysis, comparing its effect to exogenous transmembrane domains following the identification and analysis of the PA1-Lys and the PA1-LRP based on whole genome analysis of phage PA1. Additionally, this study also explored how hydrophobic region of PA1-LRP (HPP) contributes to bacterial killing when combined with PA1-Lys and examined the stability and lytic spectrum of PA1-Lys under various conditions.Results and discussionPhage PA1 belonging to the Chaseviridae family exhibited a broad host range against P. ananatis strains, with a latent period of 40 minutes and a burst size of 17.17 phages per infected cell. PA1-Lys remained stable at pH 6-10 and temperatures of 20-50°C and showed lytic activity against various Gram-negative bacteria, while PA1-Lys alone could not directly lyse bacteria, its lytic activity was enhanced in the presence of EDTA. Surprisingly, PA1-LRP inhibited bacterial growth when expressed alone. After 24 h of incubation, the OD600 value of pET28a-LRP decreased by 0.164 compared to pET28a. Furthermore, the lytic effect of co-expressed PA1-LRP and PA1-Lys was significantly stronger than each separately. After 24 h of incubation, compared to pET28a-LRP, the OD600 value of pET28a-Lys-LRP decreased by 0.444, while the OD420 value increased by 3.121. Live/dead cell staining, and flow cytometry experiments showed that the fusion expression of PA1-LRP and PA1-Lys resulted in 41.29% cell death, with bacterial morphology changing from rod-shaped to filamentous. Notably, PA1-LRP provided stronger support for endolysin-mediated cell lysis than exogenous transmembrane domains. Additionally, our results demonstrated that the HPP fused with PA1-Lys, led to 40.60% cell death, with bacteria changing from rod-shaped to spherical and exhibiting vacuolation. Taken together, this study provides insights into the lysis mechanisms of Pantoea phages and identifies a novel lysis-related protein, PA1-LRP, which could have potential applications in phage therapy and bacterial disease control.
- Published
- 2024
- Full Text
- View/download PDF
6. Isolation, characterization and therapeutic evaluation of a new Acinetobacter virus Abgy202141 lysing Acinetobacter baumannii.
- Author
-
Xun Tian, Xiang Liu, Jianhong Zhou, Li Wang, Qinrong Wang, Xiaolan Qi, Jiayu Liu, Dailin Zhao, Tom Hsiang, and Yinhui Jiang
- Subjects
ACINETOBACTER baumannii ,ACINETOBACTER ,TRANSFER RNA ,GREATER wax moth ,TRANSMISSION electron microscopy - Abstract
Acinetobacter baumannii is an opportunistic pathogen that easily resists currently available antibiotics. Phages are considered alternative therapeutic agents to conventional antibiotics for the treatment of multidrug-resistant bacteria. We isolated an Acinetobacter virus Abgy202141 from underground sewage in a residential area of Guiyang City in China. Transmission electron microscopy (TEM) analysis showed that Acinetobacter virus Abgy202141 has an icosahedral head attached to a tail. This phage infects A. baumannii strain GY-4, and was found to have a short latent period of 5min and with a burst size of 189 particles per infected host cell. Additionally, Acinetobacter virus Abgy202141 remained stable at different concentrations of chloroform and varying pH levels and temperatures. Based on SDS-PAGE analysis, it contained 14 proteins with molecular weights ranging from 12 to 125 kDa. The double-strand (ds) DNA genome of Acinetobacter virus Abgy202141 consisted of 41,242 bp with a GC content of 39.4%. It contained 50 open reading frames (ORFs), of which 29 ORFs had identified functions, but no virulence-related genes, antibiotic-resistance genes, or tRNAs were found. Phylogenetic analysis indicated that Acinetobacter virus Abgy202141 was a new phage in the Friunavirus genus. Acinetobacter virus Abgy202141 also showed the ability to prevent A. baumannii infections in the Galleria mellonella in vivo model. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
7. A bacteriophage cocktail can efficiently reduce five important Salmonella serotypes both on chicken skin and stainless steel.
- Author
-
Gvaladze, Tamar, Lehnherr, Hansjörg, and Hertwig, Stefan
- Subjects
BACTERIOPHAGES ,STAINLESS steel ,SALMONELLA typhimurium ,FOOD of animal origin ,CHICKENS ,SALMONELLA ,SALMONELLA enteritidis - Abstract
Salmonella is one of the most important zoonotic pathogens and is mostly transmitted through food of animal origin. Application of bacteriophages is a promising tool to biocontrol Salmonella on both food and food contact surfaces. In this study, we evaluated the eectiveness of a six-phage cocktail for the reduction of Salmonella Enteritidis and a mixture of five major Salmonella serotypes (S. Enteritidis, Salmonella Typhimurium, Salmonella Infantis, Salmonella Paratyphi B, and Salmonella Indiana) on chicken skin and stainless steel. A phage cocktail with a final concentration of 10
7 PFU/cm² was sprayed on these surfaces. After adding the phage cocktail, the samples were incubated at RT (∼23◦C) for dierent periods of time. The phage cocktail caused a significant reduction of S. Enteritidis and the mixed culture on chicken skin 30 min after phage addition, with 1.8 log10 and 1 log10 units, respectively. Reduction rates (1.2–1.7 log10 units) on stainless steel after 30 min were similar. Four hours after addition, the phage cocktail caused a significant reduction on both surfaces up to 3 log10 units on chicken skin and 2.4 log10 units on stainless steel. In a further experiment, bacteria added to stainless steel were not allowed to dry to simulate a fresh bacterial contamination. In this case, the bacterial count of S. Enteritidis was reduced below the detection limit after 2 h. The results demonstrate that this phage cocktail has potential to be used in post-harvest applications to control Salmonella contaminations. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
8. A hybrid receptor binding protein enables phage F341 infection of Campylobacter by binding to flagella and lipooligosaccharides.
- Author
-
Ostenfeld, Line Jensen, Sørensen, Anders Nørgaard, Neve, Horst, Vitt, Amira, Klumpp, Jochen, and Sørensen, Martine Camilla Holst
- Subjects
CAMPYLOBACTER infections ,CARRIER proteins ,PROTEIN receptors ,FLAGELLA (Microbiology) ,BACTERIOPHAGES ,GENETIC mutation ,CAMPYLOBACTER jejuni - Abstract
Flagellotropic bacteriophages are interesting candidates as therapeutics against pathogenic bacteria dependent on flagellar motility for colonization and causing disease. Yet, phage resistance other than loss of motility has been scarcely studied. Here we developed a soft agar assay to study flagellotropic phage F341 resistance in motile Campylobacter jejuni. We found that phage adsorption was prevented by diverse genetic mutations in the lipooligosaccharides forming the secondary receptor of phage F341. Genome sequencing showed phage F341 belongs to the Fletchervirus genus otherwise comprising capsular-dependent C. jejuni phages. Interestingly, phage F341 encodes a hybrid receptor binding protein (RBP) predicted as a short tail fiber showing partial similarity to RBP1 encoded by capsular-dependent Fletchervirus, but with a receptor binding domain similar to tail fiber protein H of C. jejuni CJIE1 prophages. Thus, C. jejuni prophages may represent a genetic pool from where lytic Fletchervirus phages can acquire new traits like recognition of new receptors. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
9. ProkBERT family: genomic language models for microbiome applications.
- Author
-
Ligeti, Balázs, Szepesi-Nagy, István, Bodnár, Babett, Ligeti-Nagy, Noémi, and Juhász, János
- Subjects
LANGUAGE models ,TRANSFORMER models ,ESCHERICHIA coli ,MICROBIOLOGY ,SIGNAL-to-noise ratio - Abstract
Background: In the evolving landscape of microbiology and microbiome analysis, the integration of machine learning is crucial for understanding complexmicrobial interactions, and predicting and recognizing novel functionalities within extensive datasets. However, the effectiveness of these methods in microbiology faces challenges due to the complex and heterogeneous nature of microbial data, further complicated by low signal-to-noise ratios, context-dependency, and a significant shortage of appropriately labeled datasets. This study introduces the ProkBERT model family, a collection of large language models, designed for genomic tasks. It provides a generalizable sequence representation for nucleotide sequences, learned from unlabeled genome data. This approach helps overcome the above-mentioned limitations in the field, thereby improving our understanding of microbial ecosystems and their impact on health and disease. Methods: ProkBERT models are based on transfer learning and self-supervised methodologies, enabling them to use the abundant yet complex microbial data effectively. The introduction of the novel Local Context-Aware (LCA) tokenization technique marks a significant advancement, allowing ProkBERT to overcome the contextual limitations of traditional transformer models. This methodology not only retains rich local context but also demonstrates remarkable adaptability across various bioinformatics tasks. Results: In practical applications such as promoter prediction and phage identification, the ProkBERT models show superior performance. For promoter prediction tasks, the top-performing model achieved a Matthews Correlation Coeffcient (MCC) of 0.74 for E. coli and 0.62 in mixed-species contexts. In phage identification, ProkBERT models consistently outperformed established tools like VirSorter2 and DeepVirFinder, achieving an MCC of 0.85. These results underscore the models' exceptional accuracy and generalizability in both supervised and unsupervised tasks. Conclusions: The ProkBERT model family is a compact yet powerful tool in the field of microbiology and bioinformatics. Its capacity for rapid, accurate analyses and its adaptability across a spectrum of tasks marks a significant advancement in machine learning applications in microbiology. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
10. CRISPR-Cas systems feature and targeting phages diversity in Lacticaseibacillus rhamnosus strains.
- Author
-
Panahi, Bahman, Dehganzad, Behnaz, and Nami, Yousef
- Subjects
CRISPRS ,LACTOBACILLUS rhamnosus ,WHOLE genome sequencing ,BACTERIOPHAGES - Abstract
One of the most important adaptive immune systems in bacteria against phages is clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPRassociated (CAS) genes. In this investigation, an approach based on genome mining was employed to characterize the CRISPR-Cas systems of Lacticaseibacillus rhamnosus strains. The analysis involved retrieving complete genome sequences of L. rhamnosus strains, and assessing the diversity, prevalence, and evolution of their CRISPR-Cas systems. Following this, an analysis of homology in spacer sequences from identified CRISPR arrays was carried out to investigate and characterize the range of target phages. The findings revealed that 106 strains possessed valid CRISPR-Cas structures (comprising CRISPR loci and Cas genes), constituting 45% of the examined L. rhamnosus strains. The diversity observed in the CRISPR-Cas systems indicated that all identified systems belonged to subtype II-A. Analyzing the homology of spacer sequences with phage and prophage genomes discovered that strains possessing only CRISPR-Cas subtype II targeted a broader spectrum of foreign phages. In summary, this study suggests that while there is not significant diversity among the CRISPR-Cas systems identified in L. rhamnosus strains, there exists notable variation in subtype II-A systems between L. rhamnosus and other lactobacilli. The diverse nature of these CRISPR-Cas systems underscores their natural activity and importance in adaptive immunity. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
11. Droplet-based methodology for investigating bacterial population dynamics in response to phage exposure.
- Author
-
Nikolic, Nela, Anagnostidis, Vasileios, Tiwari, Anuj, Chait, Remy, and Gielen, Fabrice
- Subjects
BACTERIAL population ,POPULATION dynamics ,BACTERIOPHAGES ,ESCHERICHIA coli ,MICROFLUIDIC devices ,BACTERIAL growth - Abstract
An alarming rise in antimicrobial resistance worldwide has spurred efforts into the search for alternatives to antibiotic treatments. The use of bacteriophages, bacterial viruses harmless to humans, represents a promising approach with potential to treat bacterial infections (phage therapy). Recent advances in microscopy-based single-cell techniques have allowed researchers to develop new quantitative methodologies for assessing the interactions between bacteria and phages, especially the ability of phages to eradicate bacterial pathogen populations and to modulate growth of both commensal and pathogen populations. Here we combine droplet microfluidics with fluorescence time-lapse microscopy to characterize the growth and lysis dynamics of the bacterium Escherichia coli confined in droplets when challenged with phage. We investigated phages that promote lysis of infected E. coli cells, specifically, a phage species with DNA genome, T7 (Escherichia virus T7) and two phage species with RNA genomes, MS2 (Emesvirus zinderi) and Qβ (Qubevirus durum). Our microfluidic trapping device generated and immobilized picoliter-sized droplets, enabling stable imaging of bacterial growth and lysis in a temperature-controlled setup. Temporal information on bacterial population size was recorded for up to 25 h, allowing us to determine growth rates of bacterial populations and helping us uncover the extent and speed of phage infection. In the long-term, the development of novel microfluidic single-cell and population-level approaches will expedite research towards fundamental understanding of the genetic and molecular basis of rapid phage-induced lysis and eco-evolutionary aspects of bacteria-phage dynamics, and ultimately help identify key factors influencing the success of phage therapy [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
12. Isolation and characterization of phage ISTP3 for bio-control application against drug-resistant Salmonella.
- Author
-
Islam, Md. Sharifull, Nime, Ishatur, Fan Pan, and Xiaohong Wang
- Subjects
SALMONELLA ,SALMONELLA typhimurium ,CHICKEN as food ,BACTERIOPHAGES ,WHOLE genome sequencing ,SALMONELLA enterica ,FOOD pathogens - Abstract
Salmonella including drug-resistant strains are major foodborne pathogens causing serious illness and pose a great threat to the prevention and control for food safety. Phages can naturally defect the bacterium, is considered as a new and promising biological antimicrobial agent in the post-antibiotic era. A poultry facility in Wuhan, China provided wastewater samples from which a collection of 29 phages were isolated and purified. A broad host spectrum phage ISTP3, which capable of infecting all tested Salmonella, including drug-resistant Salmonella enterica, were examined. Additionally, the effectiveness of this phage ISTP3 in reducing drug-resistant S. enterica was assessed in diverse food samples. Transmission electron microscopy (TEM) and whole genome sequencing demonstrated that ISTP3 was found to belong to family Ackermannviridae. The one-step growth experiment and assays of stability demonstrated that ISTP3 exhibited short periods of inactivity before replicating, produced a significant number of viral progeny during infection, and remained high stable under varying pH and temperature conditions. We evaluated the efficacy of phage ISTP3 against drug-resistant Salmonella on chicken breast and lettuce samples at different temperatures. When applying phage ISTP3 in food matrices, the drug resistant Salmonella count significantly reduced at 4°C and 25°C at an MOI of 100 or 1,000 within a timescale of 12 h. Overall, the results, such as broad host ranges, strictly lytic lifestyles, absence of lysogenic related genes, toxin genes, or virulence genes in the genome, demonstrate that the application of phage ISTP3 as a biocontrol agent has promising potential for preventing and controlling drug-resistant S. typhimurium in the context of food safety, processing, and production. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
13. Tools and methodology to in silico phage discovery in freshwater environments
- Author
-
Carlos Willian Dias Dantas, David Tavares Martins, Wylerson Guimarães Nogueira, Oscar Victor Cardenas Alegria, and Rommel Thiago Jucá Ramos
- Subjects
freshwater ,phage ,bacteriophage ,cyanophage ,virome ,Microbiology ,QR1-502 - Abstract
Freshwater availability is essential, and its maintenance has become an enormous challenge. Due to population growth and climate changes, freshwater sources are becoming scarce, imposing the need for strategies for its reuse. Currently, the constant discharge of waste into water bodies from human activities leads to the dissemination of pathogenic bacteria, negatively impacting water quality from the source to the infrastructure required for treatment, such as the accumulation of biofilms. Current water treatment methods cannot keep pace with bacterial evolution, which increasingly exhibits a profile of multidrug resistance to antibiotics. Furthermore, using more powerful disinfectants may affect the balance of aquatic ecosystems. Therefore, there is a need to explore sustainable ways to control the spreading of pathogenic bacteria. Bacteriophages can infect bacteria and archaea, hijacking their host machinery to favor their replication. They are widely abundant globally and provide a biological alternative to bacterial treatment with antibiotics. In contrast to common disinfectants and antibiotics, bacteriophages are highly specific, minimizing adverse effects on aquatic microbial communities and offering a lower cost–benefit ratio in production compared to antibiotics. However, due to the difficulty involving cultivating and identifying environmental bacteriophages, alternative approaches using NGS metagenomics in combination with some bioinformatic tools can help identify new bacteriophages that can be useful as an alternative treatment against resistant bacteria. In this review, we discuss advances in exploring the virome of freshwater, as well as current applications of bacteriophages in freshwater treatment, along with current challenges and future perspectives.
- Published
- 2024
- Full Text
- View/download PDF
14. A bacteriophage cocktail can efficiently reduce five important Salmonella serotypes both on chicken skin and stainless steel
- Author
-
Tamar Gvaladze, Hansjörg Lehnherr, and Stefan Hertwig
- Subjects
Salmonella ,phage ,biocontrol ,chicken ,steel ,post-harvest application ,Microbiology ,QR1-502 - Abstract
Salmonella is one of the most important zoonotic pathogens and is mostly transmitted through food of animal origin. Application of bacteriophages is a promising tool to biocontrol Salmonella on both food and food contact surfaces. In this study, we evaluated the effectiveness of a six-phage cocktail for the reduction of Salmonella Enteritidis and a mixture of five major Salmonella serotypes (S. Enteritidis, Salmonella Typhimurium, Salmonella Infantis, Salmonella Paratyphi B, and Salmonella Indiana) on chicken skin and stainless steel. A phage cocktail with a final concentration of 107 PFU/cm2 was sprayed on these surfaces. After adding the phage cocktail, the samples were incubated at RT (~23°C) for different periods of time. The phage cocktail caused a significant reduction of S. Enteritidis and the mixed culture on chicken skin 30 min after phage addition, with 1.8 log10 and 1 log10 units, respectively. Reduction rates (1.2–1.7 log10 units) on stainless steel after 30 min were similar. Four hours after addition, the phage cocktail caused a significant reduction on both surfaces up to 3 log10 units on chicken skin and 2.4 log10 units on stainless steel. In a further experiment, bacteria added to stainless steel were not allowed to dry to simulate a fresh bacterial contamination. In this case, the bacterial count of S. Enteritidis was reduced below the detection limit after 2 h. The results demonstrate that this phage cocktail has potential to be used in post-harvest applications to control Salmonella contaminations.
- Published
- 2024
- Full Text
- View/download PDF
15. A hybrid receptor binding protein enables phage F341 infection of Campylobacter by binding to flagella and lipooligosaccharides
- Author
-
Line Jensen Ostenfeld, Anders Nørgaard Sørensen, Horst Neve, Amira Vitt, Jochen Klumpp, and Martine Camilla Holst Sørensen
- Subjects
Campylobacter ,phage ,phage receptor ,receptor binding protein ,Fletchervirus ,flagella ,Microbiology ,QR1-502 - Abstract
Flagellotropic bacteriophages are interesting candidates as therapeutics against pathogenic bacteria dependent on flagellar motility for colonization and causing disease. Yet, phage resistance other than loss of motility has been scarcely studied. Here we developed a soft agar assay to study flagellotropic phage F341 resistance in motile Campylobacter jejuni. We found that phage adsorption was prevented by diverse genetic mutations in the lipooligosaccharides forming the secondary receptor of phage F341. Genome sequencing showed phage F341 belongs to the Fletchervirus genus otherwise comprising capsular-dependent C. jejuni phages. Interestingly, phage F341 encodes a hybrid receptor binding protein (RBP) predicted as a short tail fiber showing partial similarity to RBP1 encoded by capsular-dependent Fletchervirus, but with a receptor binding domain similar to tail fiber protein H of C. jejuni CJIE1 prophages. Thus, C. jejuni prophages may represent a genetic pool from where lytic Fletchervirus phages can acquire new traits like recognition of new receptors.
- Published
- 2024
- Full Text
- View/download PDF
16. ProkBERT family: genomic language models for microbiome applications
- Author
-
Balázs Ligeti, István Szepesi-Nagy, Babett Bodnár, Noémi Ligeti-Nagy, and János Juhász
- Subjects
genomic language models ,language models ,promoter ,phage ,BERT ,transformer models ,Microbiology ,QR1-502 - Abstract
BackgroundIn the evolving landscape of microbiology and microbiome analysis, the integration of machine learning is crucial for understanding complex microbial interactions, and predicting and recognizing novel functionalities within extensive datasets. However, the effectiveness of these methods in microbiology faces challenges due to the complex and heterogeneous nature of microbial data, further complicated by low signal-to-noise ratios, context-dependency, and a significant shortage of appropriately labeled datasets. This study introduces the ProkBERT model family, a collection of large language models, designed for genomic tasks. It provides a generalizable sequence representation for nucleotide sequences, learned from unlabeled genome data. This approach helps overcome the above-mentioned limitations in the field, thereby improving our understanding of microbial ecosystems and their impact on health and disease.MethodsProkBERT models are based on transfer learning and self-supervised methodologies, enabling them to use the abundant yet complex microbial data effectively. The introduction of the novel Local Context-Aware (LCA) tokenization technique marks a significant advancement, allowing ProkBERT to overcome the contextual limitations of traditional transformer models. This methodology not only retains rich local context but also demonstrates remarkable adaptability across various bioinformatics tasks.ResultsIn practical applications such as promoter prediction and phage identification, the ProkBERT models show superior performance. For promoter prediction tasks, the top-performing model achieved a Matthews Correlation Coefficient (MCC) of 0.74 for E. coli and 0.62 in mixed-species contexts. In phage identification, ProkBERT models consistently outperformed established tools like VirSorter2 and DeepVirFinder, achieving an MCC of 0.85. These results underscore the models' exceptional accuracy and generalizability in both supervised and unsupervised tasks.ConclusionsThe ProkBERT model family is a compact yet powerful tool in the field of microbiology and bioinformatics. Its capacity for rapid, accurate analyses and its adaptability across a spectrum of tasks marks a significant advancement in machine learning applications in microbiology. The models are available on GitHub (https://github.com/nbrg-ppcu/prokbert) and HuggingFace (https://huggingface.co/nerualbioinfo) providing an accessible tool for the community.
- Published
- 2024
- Full Text
- View/download PDF
17. CRISPR-Cas systems feature and targeting phages diversity in Lacticaseibacillus rhamnosus strains
- Author
-
Bahman Panahi, Behnaz Dehganzad, and Yousef Nami
- Subjects
CRISPR ,genome ,immune system ,phage ,spacer ,Microbiology ,QR1-502 - Abstract
One of the most important adaptive immune systems in bacteria against phages is clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (CAS) genes. In this investigation, an approach based on genome mining was employed to characterize the CRISPR-Cas systems of Lacticaseibacillus rhamnosus strains. The analysis involved retrieving complete genome sequences of L. rhamnosus strains, and assessing the diversity, prevalence, and evolution of their CRISPR-Cas systems. Following this, an analysis of homology in spacer sequences from identified CRISPR arrays was carried out to investigate and characterize the range of target phages. The findings revealed that 106 strains possessed valid CRISPR-Cas structures (comprising CRISPR loci and Cas genes), constituting 45% of the examined L. rhamnosus strains. The diversity observed in the CRISPR-Cas systems indicated that all identified systems belonged to subtype II-A. Analyzing the homology of spacer sequences with phage and prophage genomes discovered that strains possessing only CRISPR-Cas subtype II targeted a broader spectrum of foreign phages. In summary, this study suggests that while there is not significant diversity among the CRISPR-Cas systems identified in L. rhamnosus strains, there exists notable variation in subtype II-A systems between L. rhamnosus and other lactobacilli. The diverse nature of these CRISPR-Cas systems underscores their natural activity and importance in adaptive immunity.
- Published
- 2023
- Full Text
- View/download PDF
18. Evolutionary and ecological role of extracellular contractile injection systems: from threat to weapon.
- Author
-
Heiman, Clara Margot, Vacheron, Jordan, and Keel, Christoph
- Subjects
BACTERIAL ecology ,BACTERIAL evolution ,BACTERIAL genomes ,BACTERIAL communities ,LYSIS - Abstract
Contractile injection systems (CISs) are phage tail-related structures that are encoded in many bacterial genomes. These devices encompass the cell-based type VI secretion systems (T6SSs) as well as extracellular CISs (eCISs). The eCISs comprise the R-tailocins produced by various bacterial species as well as related phage tail-like structures such as the antifeeding prophages (Afps) of Serratia entomophila, the Photorhabdus virulence cassettes (PVCs), and the metamorphosis-associated contractile structures (MACs) of Pseudoalteromonas luteoviolacea. These contractile structures are released into the extracellular environment upon suicidal lysis of the producer cell and play important roles in bacterial ecology and evolution. In this review, we specifically portray the eCISs with a focus on the R-tailocins, sketch the history of their discovery and provide insights into their evolution within the bacterial host, their structures and how they are assembled and released. We then highlight ecological and evolutionary roles of eCISs and conceptualize how they can influence and shape bacterial communities. Finally, we point to their potential for biotechnological applications in medicine and agriculture. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
19. Droplet-based methodology for investigating bacterial population dynamics in response to phage exposure
- Author
-
Nela Nikolic, Vasileios Anagnostidis, Anuj Tiwari, Remy Chait, and Fabrice Gielen
- Subjects
Escherichia coli ,phage ,bacterial population ,bacterial growth ,phage-induced lysis ,phage therapy ,Microbiology ,QR1-502 - Abstract
An alarming rise in antimicrobial resistance worldwide has spurred efforts into the search for alternatives to antibiotic treatments. The use of bacteriophages, bacterial viruses harmless to humans, represents a promising approach with potential to treat bacterial infections (phage therapy). Recent advances in microscopy-based single-cell techniques have allowed researchers to develop new quantitative methodologies for assessing the interactions between bacteria and phages, especially the ability of phages to eradicate bacterial pathogen populations and to modulate growth of both commensal and pathogen populations. Here we combine droplet microfluidics with fluorescence time-lapse microscopy to characterize the growth and lysis dynamics of the bacterium Escherichia coli confined in droplets when challenged with phage. We investigated phages that promote lysis of infected E. coli cells, specifically, a phage species with DNA genome, T7 (Escherichia virus T7) and two phage species with RNA genomes, MS2 (Emesvirus zinderi) and Qβ (Qubevirus durum). Our microfluidic trapping device generated and immobilized picoliter-sized droplets, enabling stable imaging of bacterial growth and lysis in a temperature-controlled setup. Temporal information on bacterial population size was recorded for up to 25 h, allowing us to determine growth rates of bacterial populations and helping us uncover the extent and speed of phage infection. In the long-term, the development of novel microfluidic single-cell and population-level approaches will expedite research towards fundamental understanding of the genetic and molecular basis of rapid phage-induced lysis and eco-evolutionary aspects of bacteria-phage dynamics, and ultimately help identify key factors influencing the success of phage therapy.
- Published
- 2023
- Full Text
- View/download PDF
20. Isolation and characterization of phage ISTP3 for bio-control application against drug-resistant Salmonella
- Author
-
Md. Sharifull Islam, Ishatur Nime, Fan Pan, and Xiaohong Wang
- Subjects
phage ,drug-resistant ,salmonella ,characterization ,biological control ,foods ,Microbiology ,QR1-502 - Abstract
Salmonella including drug-resistant strains are major foodborne pathogens causing serious illness and pose a great threat to the prevention and control for food safety. Phages can naturally defect the bacterium, is considered as a new and promising biological antimicrobial agent in the post-antibiotic era. A poultry facility in Wuhan, China provided wastewater samples from which a collection of 29 phages were isolated and purified. A broad host spectrum phage ISTP3, which capable of infecting all tested Salmonella, including drug-resistant Salmonella enterica, were examined. Additionally, the effectiveness of this phage ISTP3 in reducing drug-resistant S. enterica was assessed in diverse food samples. Transmission electron microscopy (TEM) and whole genome sequencing demonstrated that ISTP3 was found to belong to family Ackermannviridae. The one-step growth experiment and assays of stability demonstrated that ISTP3 exhibited short periods of inactivity before replicating, produced a significant number of viral progeny during infection, and remained high stable under varying pH and temperature conditions. We evaluated the efficacy of phage ISTP3 against drug-resistant Salmonella on chicken breast and lettuce samples at different temperatures. When applying phage ISTP3 in food matrices, the drug resistant Salmonella count significantly reduced at 4°C and 25°C at an MOI of 100 or 1,000 within a timescale of 12 h. Overall, the results, such as broad host ranges, strictly lytic lifestyles, absence of lysogenic related genes, toxin genes, or virulence genes in the genome, demonstrate that the application of phage ISTP3 as a biocontrol agent has promising potential for preventing and controlling drug-resistant S. typhimurium in the context of food safety, processing, and production.
- Published
- 2023
- Full Text
- View/download PDF
21. Evolutionary and ecological role of extracellular contractile injection systems: from threat to weapon
- Author
-
Clara Margot Heiman, Jordan Vacheron, and Christoph Keel
- Subjects
extracellular contractile injection system ,tailocin ,phage ,phage tail like structure ,explosive cell lysis ,bacterial ecology ,Microbiology ,QR1-502 - Abstract
Contractile injection systems (CISs) are phage tail-related structures that are encoded in many bacterial genomes. These devices encompass the cell-based type VI secretion systems (T6SSs) as well as extracellular CISs (eCISs). The eCISs comprise the R-tailocins produced by various bacterial species as well as related phage tail-like structures such as the antifeeding prophages (Afps) of Serratia entomophila, the Photorhabdus virulence cassettes (PVCs), and the metamorphosis-associated contractile structures (MACs) of Pseudoalteromonas luteoviolacea. These contractile structures are released into the extracellular environment upon suicidal lysis of the producer cell and play important roles in bacterial ecology and evolution. In this review, we specifically portray the eCISs with a focus on the R-tailocins, sketch the history of their discovery and provide insights into their evolution within the bacterial host, their structures and how they are assembled and released. We then highlight ecological and evolutionary roles of eCISs and conceptualize how they can influence and shape bacterial communities. Finally, we point to their potential for biotechnological applications in medicine and agriculture.
- Published
- 2023
- Full Text
- View/download PDF
22. Isolation and characterization of novel bacteriophage vB_KpP_HS106 for Klebsiella pneumonia K2 and applications in foods.
- Author
-
Changrong Chen, Zhenxiang Tao, Tengteng Li, Hong Chen, Yong Zhao, and Xiaohong Sun
- Subjects
KLEBSIELLA pneumoniae ,BACTERIOPHAGES ,FOOD pathogens ,DRUG resistance in bacteria ,ANTIBACTERIAL agents ,CHICKENS ,SEWAGE - Abstract
The detection rate of Klebsiella pneumoniae in food is increasing, and it has emerged as a food pathogen. Global health is threatened due to the emergence of multidrug-resistant (MDR) and hypervirulent (hv) K. pneumoniae. Phages have a promising application as antibacterial agents and have the ability to lyse MDR strains. Hence, phage vB_KpP_HS106 against MDR-hv K. pneumoniae strains was isolated from sewage collected from a hospital. It can maintain stable activity at a pH range of 4-12 and a temperature range of 4°C to 50°C. The maximum adsorption rate of phage HS106 was found to be approximately 84.2% at 6 min. One-step growth curve analysis showed that the latent period of HS106 was 10 min and the burst size was approximately 183 PFU/cell. Furthermore, whole genome analysis indicated that the genome of phage HS106 was a doublestranded linear 76,430-bp long DNA molecule with 44% GC content. A total of 95 open reading frames were annotated in the HS106 genome, which did not contain any virulence genes or antibiotic resistance genes. Phage HS106 reduced MDR K. pneumoniae in milk by approximately 1.6 log10 CFU/mL at 25°C and in chicken by approximately 2 log
10 CFU/cm³ at 25°C. Therefore, vB_KpP_HS106 is a promising alternative to antibiotics for biocontrol against multidrug-resistant K. pneumoniae in foods. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
23. Comparative analysis of gut DNA viromes in wild and captive Himalayan vultures.
- Author
-
Jundie Zhai, You Wang, Boyu Tang, Sisi Zheng, Shunfu He, Wenxin Zhao, Hanxi Chen, Jun Lin, Feng Li, Yuzi Bao, Zhuoma Lancuo, Kirill Sharshov, Chuanfa Liu, and Wen Wang
- Subjects
DNA analysis ,VULTURES ,ANIMAL diversity ,VIRUS isolation ,BACTERIAL communities - Abstract
Introduction: Himalayan vultures (Gyps hinalayensis) are widely distributed on the Qinghai-Tibetan Plateau and play a crucial role in maintaining the ecological balance by feeding on decayed corpses of wild and domestic animals. Largescale culture and metagenomics studies have broadened our understanding of viral diversity in animals' gastrointestinal tracts. However, despite the importance of gut viral communities in regulating bacterial diversity and performing symbiotic functions, no gut viral study has been conducted on Himalayan vultures. Furthermore, the impact of captivity on the gut virome of these vultures remains unknown. Methods: In this study, metagenomic sequencing methods targeting DNA of virus-like particles enriched from feces were used to characterize the gut DNA viromes of wild and captive Himalayan vultures. Results: In total, 22,938 unique viral operational taxonomic units (vOTUs) were identified and assigned to 140 viral genera in 41 viral families. These families included viruses associated with bacteria, animals, plants, insects, and archaea. Phage communities, including Siphoviridae, Microviridae, Myoviridae, Inoviridae, and Herelleviridae, dominated the gut virome of Himalayan vultures. Wild vultures exhibited higher viral richness and diversity compared with those in captivity. The functional capacity of the gut virome was characterized by identifying 93 KEGG pathways, which were significantly enriched in metabolism and genetic information processing. Abundant auxiliary metabolic genes, such as carbohydrate-active enzyme, and antibiotic resistance genes, were also found in the vultures' gut virome. Discussion: Our findings reveal the complex and diverse viral community present in the gut virome of Himalayan vultures, which varies between wild, and captive states. The DNA virome dataset establishes a baseline for the vultures' gut virome and will serve as a reference for future virus isolation and cultivation. Understanding the impact of captivity on the gut virome contributes to our knowledge of vultures' response to captivity and aids in optimizing their rehabilitation and implementing protective measures. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
24. The human gut phageome: composition, development, and alterations in disease.
- Author
-
Yingying Zhang and Ran Wang
- Subjects
ETHNICITY ,MICROBIAL ecology ,NUCLEOTIDE sequencing ,BACTERIAL communities ,METABOLIC syndrome ,GASTROINTESTINAL system ,BACTERIOPHAGES - Abstract
The human gastrointestinal tract is colonized by a large number of microorganisms, including bacteria, archaea, viruses, and eukaryotes. The bacterial community has been widely confirmed to have a significant impact on human health, while viruses, particularly phages, have received less attention. Phages are viruses that specifically infect bacteria. They are abundant in the biosphere and exist in a symbiotic relationship with their host bacteria. Although the application of high-throughput sequencing and bioinformatics technology has greatly improved our understanding of the genomic diversity, taxonomic composition, and spatio-temporal dynamics of the human gut phageome, there is still a large portion of sequencing data that is uncharacterized. Preliminary studies have predicted that the phages play a crucial role in driving microbial ecology and evolution. Prior to exploring the function of phages, it is necessary to address the obstacles that hinder establishing a comprehensive sequencing database with sufficient biological properties and understanding the impact of phage-bacteria interactions on human health. In this study, we provide an overview of the human gut phageome, including its composition, structure, and development. We also explore the various factors that may influence the phageome based on current research, including age, diet, ethnicity, and geographical location. Additionally, we summarize the relationship between the phageome and human diseases, such as IBD, IBS, obesity, diabetes, and metabolic syndrome. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
25. A review on the research progress on non-pharmacological therapy of Helicobacter pylori.
- Author
-
Qian Luo, Na Liu, Sugui Pu, Ze Zhuang, Hang Gong, and Dekui Zhang
- Subjects
BACTERIAL colonies ,ANTIMICROBIAL peptides ,HYPERBARIC oxygenation ,HELICOBACTER pylori ,PROTON pump inhibitors ,PATHOGENIC microorganisms - Abstract
Helicobacter pylori is a pathogenic microorganism that mainly resides in the human stomach and is the major cause of chronic gastritis, peptic ulcer and gastric cancer. Up to now, the treatment of Helicobacter pylori has been predominantly based on a combination of antibiotics and proton pump inhibitors. However, the increasing antibiotic resistance greatly limits the efficacy of anti-Helicobacter pylori treatment. Turning to non-antibiotic or non-pharmacological treatment is expected to solve this problem and may become a new strategy for treating Helicobacter pylori. In this review, we outline Helicobacter pylori's colonization and virulence mechanisms. Moreover, a series of non-pharmacological treatment methods for Helicobacter pylori and their mechanisms are carefully summarized, including probiotics, oxygen-rich environment or hyperbaric oxygen therapy, antibacterial photodynamic therapy, nanomaterials, antimicrobial peptide therapy, phage therapy and modified lysins. Finally, we provide a comprehensive overview of the challenges and perspectives in developing new medical technologies for treating Helicobacter pylori without drugs. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
26. Editorial: Bacteria-phage coevolution in antimicrobial resistance
- Author
-
Pingfeng Yu, Hanpeng Liao, Na Wang, and Ramesh Goel
- Subjects
antimicrobial resistance ,antimicrobial resistance gene ,phage ,phage therapy ,bacteria-phage coevolution ,Microbiology ,QR1-502 - Published
- 2023
- Full Text
- View/download PDF
27. Predictable Molecular Adaptation of Coevolving Enterococcus faecium and Lytic Phage EfV12-phi1
- Author
-
Wandro, Stephen, Oliver, Andrew, Gallagher, Tara, Weihe, Claudia, England, Whitney, Martiny, Jennifer BH, and Whiteson, Katrine
- Subjects
Microbiology ,Medical Microbiology ,Biomedical and Clinical Sciences ,Biological Sciences ,Genetics ,Antimicrobial Resistance ,Human Genome ,Infectious Diseases ,Biotechnology ,Aetiology ,2.1 Biological and endogenous factors ,Infection ,phage ,Enterococcus ,experimental evolution ,phage therapy ,tail fiber ,exopolysaccharide ,coevolution ,Environmental Science and Management ,Soil Sciences ,Medical microbiology - Abstract
Bacteriophages are highly abundant in human microbiota where they coevolve with resident bacteria. Phage predation can drive the evolution of bacterial resistance, which can then drive reciprocal evolution in the phage to overcome that resistance. Such coevolutionary dynamics have not been extensively studied in human gut bacteria, and are of particular interest for both understanding and eventually manipulating the human gut microbiome. We performed experimental evolution of an Enterococcus faecium isolate from healthy human stool in the absence and presence of a single infecting Myoviridae bacteriophage, EfV12-phi1. Four replicates of E. faecium and phage were grown with twice daily serial transfers for 8 days. Genome sequencing revealed that E. faecium evolved resistance to phage through mutations in the yqwD2 gene involved in exopolysaccharide biogenesis and export, and the rpoC gene which encodes the RNA polymerase β' subunit. In response to bacterial resistance, phage EfV12-phi1 evolved varying numbers of 1.8 kb tandem duplications within a putative tail fiber gene. Host range assays indicated that coevolution of this phage-host pair resulted in arms race dynamics in which bacterial resistance and phage infectivity increased over time. Tracking mutations from population sequencing of experimental coevolution can quickly illuminate phage entry points along with resistance strategies in both phage and host - critical information for using phage to manipulate microbial communities.
- Published
- 2019
28. Candidate Phyla Radiation Roizmanbacteria From Hot Springs Have Novel and Unexpectedly Abundant CRISPR-Cas Systems
- Author
-
Chen, Lin-Xing, Al-Shayeb, Basem, Méheust, Raphaël, Li, Wen-Jun, Doudna, Jennifer A, and Banfield, Jillian F
- Subjects
Human Genome ,Genetics ,Biotechnology ,CPR ,Roizmanbacteria ,CRISPR-Cas ,phage ,hot spring ,Environmental Science and Management ,Soil Sciences ,Microbiology - Abstract
The Candidate Phyla Radiation (CPR) comprises a huge group of bacteria that have small genomes that rarely encode CRISPR-Cas systems for phage defense. Consequently, questions remain about their mechanisms of phage resistance and the nature of phage that infect them. The compact CRISPR-CasY system (Cas12d) with potential value in genome editing was first discovered in these organisms. Relatively few CasY sequences have been reported to date, and little is known about the function and activity of these systems in the natural environment. Here, we conducted a genome-resolved metagenomic investigation of hot spring microbiomes and recovered CRISPR systems mostly from Roizmanbacteria that involve CasY proteins that are divergent from published sequences. Within population diversity in the spacer set indicates current in situ diversification of most of the loci. In addition to CasY, some Roizmanbacteria genomes also encode large type I-B and/or III-A systems that, based on spacer targeting, are used in phage defense. CRISPR targeting identified three phage represented by complete genomes and a prophage, which are the first reported for bacteria of the Microgenomates superphylum. Interestingly, one phage encodes a Cas4-like protein, a scenario that has been suggested to drive acquisition of self-targeting spacers. Consistent with this, the Roizmanbacteria population that it infects has a CRISPR locus that includes self-targeting spacers and a fragmented CasY gene (fCasY). Despite gene fragmentation, the PAM sequence is the same as that of other CasY reported in this study. Fragmentation of CasY may avoid the lethality of self-targeting spacers. However, the spacers may still have some biological role, possibly in genome regulation. The findings expand our understanding of CasY diversity, and more broadly, CRISPR-Cas systems and phage of CPR bacteria.
- Published
- 2019
29. Coastal water bacteriophages infect various sets of Vibrio parahaemolyticus sequence types.
- Author
-
Brossard Stoos, Kari A., Ren, Jennifer, Shields-Cutler, Robin R., Sams, Kelly L., Caldwell, Shannon, Ho, Marvin B., Rivara, Gregg, Whistler, Cheryl A., Jones, Stephen H., Wiedmann, Martin, DeMent, Jamie, Getchell, Rodman G., and Marquis, Hélène
- Subjects
TERRITORIAL waters ,VIBRIO parahaemolyticus ,BACTERIOPHAGES ,FOODBORNE diseases ,CONSUMER confidence ,DISEASE outbreaks - Abstract
Introduction: Gastrointestinal illnesses associated with the consumption of shellfish contaminated with Vibrio parahaemolyticus have a negative impact on the shellfish industry due to recalls and loss of consumer confidence in products. This bacterial pathogen is very diverse and specific sequence types (STs), ST631 and ST36, have emerged as prevalent causes of Vibrio foodborne disease outbreaks in the US, though other STs have been implicated in sporadic cases. We investigated whether bacteriophages could be used as a proxy to monitor for the presence of distinct V. parahaemolyticus STs in coastal waters. Methods: For this purpose, bacteriophages infecting V. parahaemolyticus were isolated from water samples collected on the Northeast Atlantic coast. The isolated phages were tested against a collection of 29 V. parahaemolyticus isolates representing 18 STs, including six clonal complexes (CC). Four distinct phages were identified based on their ability to infect different sets of V. parahaemolyticus isolates. Results and Discussion: Overall, the 29 bacterial isolates segregated into one of eight patterns of susceptibility, ranging from resistance to all four phages to susceptibility to any number of phages. STs represented by more than one bacterial isolate segregated within the same pattern of susceptibility except for one V. parahaemolyticus ST. Other patterns of susceptibility included exclusively clinical isolates represented by distinct STs. Overall, this study suggests that phages populating coastal waters could be exploited to monitor for the presence of V. parahaemolyticus STs known to cause foodborne outbreaks. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
30. Genome-centric view of the microbiome in a new deep-sea glass sponge species Bathydorus sp.
- Author
-
Tao-Shu Wei, Zhao-Ming Gao, Lin Gong, Qing-Mei Li, Ying-Li Zhou, Hua-Guan Chen, Li-Sheng He, and Yong Wang
- Subjects
ammonia-oxidizing archaea ,symbiont Bdellovibrio ,the South China Sea ,CRISPR ,phage ,Microbiology ,QR1-502 - Abstract
Sponges are widely distributed in the global ocean and harbor diverse symbiotic microbes with mutualistic relationships. However, sponge symbionts in the deep sea remain poorly studied at the genome level. Here, we report a new glass sponge species of the genus Bathydorus and provide a genome-centric view of its microbiome. We obtained 14 high-quality prokaryotic metagenome-assembled genomes (MAGs) affiliated with the phyla Nitrososphaerota, Pseudomonadota, Nitrospirota, Bdellovibrionota, SAR324, Bacteroidota, and Patescibacteria. In total, 13 of these MAGs probably represent new species, suggesting the high novelty of the deep-sea glass sponge microbiome. An ammonia-oxidizing Nitrososphaerota MAG B01, which accounted for up to 70% of the metagenome reads, dominated the sponge microbiomes. The B01 genome had a highly complex CRISPR array, which likely represents an advantageous evolution toward a symbiotic lifestyle and forceful ability to defend against phages. A sulfur-oxidizing Gammaproteobacteria species was the second most dominant symbiont, and a nitrite-oxidizing Nitrospirota species could also be detected, but with lower relative abundance. Bdellovibrio species represented by two MAGs, B11 and B12, were first reported as potential predatory symbionts in deep-sea glass sponges and have undergone dramatic genome reduction. Comprehensive functional analysis indicated that most of the sponge symbionts encoded CRISPR–Cas systems and eukaryotic-like proteins for symbiotic interactions with the host. Metabolic reconstruction further illustrated their essential roles in carbon, nitrogen, and sulfur cycles. In addition, diverse putative phages were identified from the sponge metagenomes. Our study expands the knowledge of microbial diversity, evolutionary adaption, and metabolic complementarity in deep-sea glass sponges.
- Published
- 2023
- Full Text
- View/download PDF
31. Predictable Molecular Adaptation of Coevolving Enterococcus faecium and Lytic Phage EfV12-phi1.
- Author
-
Wandro, Stephen, Oliver, Andrew, Gallagher, Tara, Weihe, Claudia, England, Whitney, Martiny, Jennifer BH, and Whiteson, Katrine
- Subjects
Enterococcus ,coevolution ,exopolysaccharide ,experimental evolution ,phage ,phage therapy ,tail fiber ,Environmental Science and Management ,Soil Sciences ,Microbiology - Abstract
Bacteriophages are highly abundant in human microbiota where they coevolve with resident bacteria. Phage predation can drive the evolution of bacterial resistance, which can then drive reciprocal evolution in the phage to overcome that resistance. Such coevolutionary dynamics have not been extensively studied in human gut bacteria, and are of particular interest for both understanding and eventually manipulating the human gut microbiome. We performed experimental evolution of an Enterococcus faecium isolate from healthy human stool in the absence and presence of a single infecting Myoviridae bacteriophage, EfV12-phi1. Four replicates of E. faecium and phage were grown with twice daily serial transfers for 8 days. Genome sequencing revealed that E. faecium evolved resistance to phage through mutations in the yqwD2 gene involved in exopolysaccharide biogenesis and export, and the rpoC gene which encodes the RNA polymerase β' subunit. In response to bacterial resistance, phage EfV12-phi1 evolved varying numbers of 1.8 kb tandem duplications within a putative tail fiber gene. Host range assays indicated that coevolution of this phage-host pair resulted in arms race dynamics in which bacterial resistance and phage infectivity increased over time. Tracking mutations from population sequencing of experimental coevolution can quickly illuminate phage entry points along with resistance strategies in both phage and host - critical information for using phage to manipulate microbial communities.
- Published
- 2018
32. Coastal water bacteriophages infect various sets of Vibrio parahaemolyticus sequence types
- Author
-
Kari A. Brossard Stoos, Jennifer Ren, Robin R. Shields-Cutler, Kelly L. Sams, Shannon Caldwell, Marvin B. Ho, Gregg Rivara, Cheryl A. Whistler, Stephen H. Jones, Martin Wiedmann, Jamie DeMent, Rodman G. Getchell, and Hélène Marquis
- Subjects
Vibrio parahaemolyticus ,vibriophage ,sequence type ,phage ,ST36 ,Microbiology ,QR1-502 - Abstract
IntroductionGastrointestinal illnesses associated with the consumption of shellfish contaminated with Vibrio parahaemolyticus have a negative impact on the shellfish industry due to recalls and loss of consumer confidence in products. This bacterial pathogen is very diverse and specific sequence types (STs), ST631 and ST36, have emerged as prevalent causes of Vibrio foodborne disease outbreaks in the US, though other STs have been implicated in sporadic cases. We investigated whether bacteriophages could be used as a proxy to monitor for the presence of distinct V. parahaemolyticus STs in coastal waters.MethodsFor this purpose, bacteriophages infecting V. parahaemolyticus were isolated from water samples collected on the Northeast Atlantic coast. The isolated phages were tested against a collection of 29 V. parahaemolyticus isolates representing 18 STs, including six clonal complexes (CC). Four distinct phages were identified based on their ability to infect different sets of V. parahaemolyticus isolates.Results and DiscussionOverall, the 29 bacterial isolates segregated into one of eight patterns of susceptibility, ranging from resistance to all four phages to susceptibility to any number of phages. STs represented by more than one bacterial isolate segregated within the same pattern of susceptibility except for one V. parahaemolyticus ST. Other patterns of susceptibility included exclusively clinical isolates represented by distinct STs. Overall, this study suggests that phages populating coastal waters could be exploited to monitor for the presence of V. parahaemolyticus STs known to cause foodborne outbreaks.
- Published
- 2022
- Full Text
- View/download PDF
33. Phage-prokaryote coexistence strategy mediates microbial community diversity in the intestine and sediment microhabitats of shrimp culture pond ecosystem.
- Author
-
Zhixuan Deng, Shenzheng Zeng, Renjun Zhou, Dongwei Hou, Shicheng Bao, Linyu Zhang, Qilu Hou, Xuanting Li, Shaoping Weng, Jianguo He, and Zhijian Huang
- Abstract
Emerging evidence supports that the phage-prokaryote interaction drives ecological processes in various environments with different phage life strategies. However, the knowledge of phage-prokaryote interaction in the shrimp culture pond ecosystem (SCPE) is still limited. Here, the viral and prokaryotic community profiles at four culture stages in the intestine of Litopenaeus vannamei and cultural sediment microhabitats of SCPE were explored to elucidate the contribution of phage-prokaryote interaction in modulating microbial communities. The results demonstrated that the most abundant viral families in the shrimp intestine and sediment were Microviridae, Circoviridae, Inoviridae, Siphoviridae, Podoviridae, Myoviridae, Parvoviridae, Herelleviridae, Mimiviridae, and Genomoviridae, while phages dominated the viral community. The dominant prokaryotic genera were Vibrio, Formosa, Aurantisolimonas, and Shewanella in the shrimp intestine, and Formosa, Aurantisolimonas, Algoriphagus, and Flavobacterium in the sediment. The viral and prokaryotic composition of the shrimp intestine and sediment were significantly different at four culture stages, and the phage communities were closely related to the prokaryotic communities. Moreover, the phageprokaryote interactions can directly or indirectly modulate the microbial community composition and function, including auxiliary metabolic genes and closed toxin genes. The interactional analysis revealed that phages and prokaryotes had diverse coexistence strategies in the shrimp intestine and sediment microhabitats of SCPE. Collectively, our findings characterized the composition of viral communities in the shrimp intestine and cultural sediment and revealed the distinct pattern of phage-prokaryote interaction in modulating microbial community diversity, which expanded our cognization of the phage-prokaryote coexistence strategy in aquatic ecosystems from the microecological perspective and provided theoretical support for microecological prevention and control of shrimp culture health management. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
34. The antibacterial activity of a novel highly thermostable endolysin, LysKP213, against Gram-negative pathogens is enhanced when combined with outer membrane permeabilizing agents.
- Author
-
Chu D, Lan J, Liang L, Xia K, Li L, Yang L, Liu H, and Zhang T
- Abstract
Phages and phage-encoded lytic enzymes are promising antimicrobial agents. In this study, we report the isolation and identification of bacteriophage KP2025 from Klebsiella pneumoniae . Bioinformatics analysis of KP2025 revealed a putative endolysin, LysKP213, containing a T4-like_lys domain. Purified LysKP213 was found to be highly thermostable, retaining approximately 44.4% of its lytic activity after 20 h of incubation at 95°C, and approximately 57.5% residual activity after 30 min at 121°C. Furthermore, when administered in combination with polymyxin B or fused at the N-terminus with the antimicrobial peptide cecropin A (CecA), LysKP213 exhibited increased antibacterial activity against Gram-negative pathogens, including K. pneumoniae , Pseudomonas aeruginosa , Acinetobacter baumannii , and Escherichia coli , both in vitro and in vivo . These results indicated that LysKP213 is a highly thermostable endolysin that, when combined with or fused with an outer membrane permeabilizer, has enhanced antibacterial activity and is a candidate agent for the control of infections by Gram-negative pathogens., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2024 Chu, Lan, Liang, Xia, Li, Yang, Liu and Zhang.)
- Published
- 2024
- Full Text
- View/download PDF
35. Application of a novel lytic phage vB_EcoM_SQ17 for the biocontrol of Enterohemorrhagic Escherichia coli O157:H7 and Enterotoxigenic E. coli in food matrices.
- Author
-
Yan Zhou, Qiyang Wan, Hongduo Bao, Yonghao Guo, Shujiao Zhu, Hui Zhang, Maoda Pang, and Ran Wang
- Subjects
ESCHERICHIA coli O157:H7 ,ESCHERICHIA coli ,LETTUCE ,BACTERIOPHAGES ,FOOD poisoning ,FOOD preservation ,FOOD pathogens - Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 and Enterotoxigenic E. coli (ETEC) are important foodborne pathogens, causing serious food poisoning outbreaks worldwide. Bacteriophages, as novel antibacterial agents, have been increasingly exploited to control foodborne pathogens. In this study, a novel broad-host range lytic phage vB_EcoM_SQ17 (SQ17), was isolated, characterized, and evaluated for its potential to control bacterial counts in vitro and in three different food matrices (milk, raw beef, and fresh lettuce). Phage SQ17 was capable of infecting EHEC O157:H7, ETEC, and other E. coli strains. Morphology, one-step growth, and stability assay showed that phage SQ17 belongs to the Caudovirales order, Myoviridae family, and Mosigvirus genus. It has a short latent period of 10 min, a burst size of 71 PFU/infected cell, high stability between pH 4 to 12 as well as thermostability between 30°C and 60°C for 60 min. Genome sequencing analysis revealed that the genome of SQ17 does not contain any genes associated with antibiotic resistance, toxins, lysogeny, or virulence factors, indicating the potential safe application of phage SQ17 in the food industry. In Luria-Bertani (LB) medium, phage SQ17 significantly decreased the viable counts of EHEC O157:H7 by more than 2.40 log CFU/ml (p < 0.05) after 6 h of incubation at 37°C. Phage SQ17 showed great potential to be applied for biocontrol of EHEC O157:H7 in milk and raw beef. In fresh lettuce, treatment with SQ17 also resulted in significant reduction of viable cell counts of EHEC O157:H7 and ETEC at both 4°C and 25°C. Our results demonstrate that SQ17 is a good candidate for application as an EHEC O157:H7 and ETEC biocontrol agent in the processing stages of food production and food preservation. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
36. Prophage Diversity Across Salmonella and Verotoxin-Producing Escherichia coli in Agricultural Niches of British Columbia, Canada.
- Author
-
Karen Fong, Yu Tong Lu, Brenner, Thomas, Falardeau, Justin, and Siyun Wang
- Subjects
ESCHERICHIA coli ,FOODBORNE diseases ,FOOD pathogens ,BACTERIAL evolution ,SALMONELLA ,SALMONELLA typhimurium ,BACTERIOPHAGES - Abstract
Prophages have long been regarded as an important contributor to the evolution of Salmonella and Verotoxin-producing E. coli (VTEC), members of the Enterobacteriaceae that cause millions of cases of foodborne illness in North America. In S. Typhimurium, prophages provide many of the genes required for invasion; similarly, in VTEC, the Verotoxin-encoding genes are located in cryptic prophages. The ability of prophages to quickly acquire and lose genes have driven their rapid evolution, leading to highly diversified populations of phages that can infect distantly-related bacterial hosts. To defend against foreign genetic materials (i.e., phages), bacteria have evolved Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) immunity, consisting of variable spacer regions that match short nucleic acid sequences of invaders previously encountered. The number of spacer regions varies widely amongst Enterobacteriaceae, and there is currently no clear consensus if the accumulation of spacers is linked to genomic prophage abundance. Given the immense prophage diversity and contribution to bacterial host phenotypes, we analyzed the prophage sequences within 118 strains of Salmonella and VTEC, 117 of which are of agricultural origin. Overall, 130 unique prophage sequences were identified and they were found to be remarkably diverse with <50% nucleotide similarity, particularly with the Gifsy-1 group which was identified in several Salmonella serovars and interestingly, a strain of VTEC. Additionally, we identified a novel plasmid-like phage that carried antibiotic resistance and bacteriocin resistance genes. The strains analyzed carried at least six distinct spacers which did not possess homology to prophages identified in the same genome. In fact, only a fraction of all identified spacers (14%) possessed significant homology to known prophages. Regression models did not discern a correlation between spacer and prophage abundance in our strains, although the relatively high number of spacers in our strains (an average of 27 in Salmonella and 19 in VTEC) suggest that high rates of infection may occur in agricultural niches and be a contributing driver in bacterial evolution. Cumulatively, these results shed insight into prophage diversity of Salmonella and VTEC, which will have further implications when informing development of phage therapies against these foodborne pathogens. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
37. Ensemble Learning-Based Feature Selection for Phage Protein Prediction.
- Author
-
Songbo Liu, Chengmin Cui, Huipeng Chen, and Tong Liu
- Subjects
FEATURE selection ,PROTEOMICS ,PROTEINS ,ANTI-infective agents - Abstract
Phage has high specificity for its host recognition. As a natural enemy of bacteria, it has been used to treat super bacteria many times. Identifying phage proteins from the original sequence is very important for understanding the relationship between phage and host bacteria and developing new antimicrobial agents. However, traditional experimental methods are both expensive and time-consuming. In this study, an ensemble learning-based feature selectionmethod is proposed to find important features for phage protein identification. The method uses four types of protein sequence-derived features, quantifies the importance of each feature by adding perturbations to the features to influence the results, and finally splices the important features among the four types of features. In addition, we analyzed the selected features and their biological significance. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
38. Salmonella phages affect the intestinal barrier in chicks by altering the composition of early intestinal flora: association with time of phage use.
- Author
-
Hongze Zhao, Yue Li, Peilin Lv, Jinmei Huang, Rong Tai, Xiue Jin, Jianhua Wang, and Xiliang Wang
- Abstract
Phages show promise in replacing antibiotics to treat or prevent bacterial diseases in the chicken breeding industry. Chicks are easily affected by their environment during early growth. Thus, this study investigated whether oral phages could affect the intestinal barrier function of chicks with a focus on the cecal microbiome. In a two-week trial, forty one-day-old hens were randomly divided into four groups: (1) NC, negative control; (2) Phage 1, 10
9 PFU phage/day (days 3–5); (3) Phage 2, 109 PFU phage/day (days 8–10); and (4) AMX, 1 mg/mL amoxicillin/day (days 8–10). High-throughput sequencing results of cecal contents showed that oral administration of phages significantly affected microbial community structure and community composition, and increased the relative abundance of Enterococcus. The number of different species in the Phage 1 group was much higher than that in the Phage 2 group, and differences in alpha and beta diversity also indicated that the magnitude of changes in the composition of the cecal microbiota correlated with the time of phage use. Particularly in the first stage of cecal microbiota development, oral administration of bacteriophages targeting Salmonella may cause substantial changes in chicks, as evidenced by the results of the PICRUSt2 software function prediction, reminding us to be cautious about the time of phage use in chicks and to avoid high oral doses of phages during the first stage. Additionally, the Phage 2 samples not only showed a significant increase in the relative abundance of Bifidobacterium and Subdoligranulum, but also improved the intestinal morphology (jejunum) and increased the mRNA expression level of occludin and ZO-1. We concluded that phages do not directly interact with eukaryotic cells. The enhancement of intestinal barrier function by phages in chicks may be related to changes in the intestinal flora induced by phages. This implies that phages may affect intestinal health by regulating the intestinal flora. This study provides new ideas for phage prevention of intestinal bacterial infections and promotes large-scale application of phages in the poultry industry. [ABSTRACT FROM AUTHOR]- Published
- 2022
- Full Text
- View/download PDF
39. Genome Mining Approach Reveals the Occurrence and Diversity Pattern of Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated Systems in Lactobacillus brevis Strains.
- Author
-
Panahi, Bahman, Majidi, Mohammad, and Hejazi, Mohammad Amin
- Subjects
LACTOBACILLUS brevis ,CRISPRS ,KARENIA brevis ,CRYPTOSPORIDIUM ,GENOMES ,DNA ,MINES & mineral resources ,GENE targeting - Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) together with their CRISPR-associated (Cas) genes are widely distributed in prokaryotes that provide an adaptive defense mechanism against foreign invasive DNA. There is relatively little knowledge about the CRISPR-Cas diversity and evolution in Lactobacillus brevis strains. Therefore, in this study, a genome-mining approach was employed to investigate the diversity and occurrence of the CRISPR-Cas system in 83 L. brevis strains. Moreover, trans-activating CRISPR RNA (tracrRNA) and protospacer adjacent motif (PAM) as pivotal elements for the successful targeting and inference of phages by the subtype II CRISPR-Cas systems were surveyed. Finally, evolutionary paths of L. brevis strains under selective pressure from foreign invasive DNA such as plasmids and phages of studied strains were surveyed using acquisition and deletion events analysis of spacers. A total of 127 confirmed CRISPRs were identified, which were distributed in 69 strains. Among strains with confirmed CRISPRs, 35 strains only contained one CRISPR locus, 23 strains contained two CRISPR loci, and 12 strains contained three to six CRISPR loci. L. brevis strains frequently harbor more than one CRISPR system. Analysis of confirmed CRISPR arrays showed that 31 out of 127 confirmed CRISPRs included Cas genes which were categorized as one of the II-A, II-C, and I-E subtypes. Analysis of subtype II-A spacers reflected divergent evolution for 18 strains into 16 unique groups. Additional analysis of spacer sequences also confirmed the implication of characterizing CRISPR-Cas systems in targeting of phages and plasmids. The current study highlighted the potential of utilizing CRISPR spacer polymorphism in genotyping lactobacillus strains. Moreover, it provides deep insights into the occurrence, diversity, and functional impacts of the CRISPR-Cas system in L. brevis strains. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
40. Comparative Omics and Trait Analyses of Marine Pseudoalteromonas Phages Advance the Phage OTU Concept
- Author
-
Duhaime, Melissa B, Solonenko, Natalie, Roux, Simon, Verberkmoes, Nathan C, Wichels, Antje, and Sullivan, Matthew B
- Subjects
Microbiology ,Biological Sciences ,Ecology ,Genetics ,Infectious Diseases ,2.2 Factors relating to the physical environment ,Aetiology ,Infection ,phage ,marine microbiology ,particle-associated ,comparative genomics ,Pseudoalteromonas ,Environmental Science and Management ,Soil Sciences ,Medical microbiology - Abstract
Viruses influence the ecology and evolutionary trajectory of microbial communities. Yet our understanding of their roles in ecosystems is limited by the paucity of model systems available for hypothesis generation and testing. Further, virology is limited by the lack of a broadly accepted conceptual framework to classify viral diversity into evolutionary and ecologically cohesive units. Here, we introduce genomes, structural proteomes, and quantitative host range data for eight Pseudoalteromonas phages isolated from Helgoland (North Sea, Germany) and use these data to advance a genome-based viral operational taxonomic unit (OTU) definition. These viruses represent five new genera and inform 498 unaffiliated or unannotated protein clusters (PCs) from global virus metagenomes. In a comparison of previously sequenced Pseudoalteromonas phage isolates (n = 7) and predicted prophages (n = 31), the eight phages are unique. They share a genus with only one other isolate, Pseudoalteromonas podophage RIO-1 (East Sea, South Korea) and two Pseudoalteromonas prophages. Mass-spectrometry of purified viral particles identified 12-20 structural proteins per phage. When combined with 3-D structural predictions, these data led to the functional characterization of five previously unidentified major capsid proteins. Protein functional predictions revealed mechanisms for hijacking host metabolism and resources. Further, they uncovered a hybrid sipho-myovirus that encodes genes for Mu-like infection rarely described in ocean systems. Finally, we used these data to evaluate a recently introduced definition for virus populations that requires members of the same population to have >95% average nucleotide identity across at least 80% of their genes. Using physiological traits and genomics, we proposed a conceptual model for a viral OTU definition that captures evolutionarily cohesive and ecologically distinct units. In this trait-based framework, sensitive hosts are considered viral niches, while host ranges and infection efficiencies are tracked as viral traits. Quantitative host range assays revealed conserved traits within virus OTUs that break down between OTUs, suggesting the defined units capture niche and fitness differentiation. Together these analyses provide a foundation for model system-based hypothesis testing that will improve our understanding of marine copiotrophs, as well as phage-host interactions on the ocean particles and aggregates where Pseudoalteromonas thrive.
- Published
- 2017
41. Daily Reports on Phage-Host Interactions
- Author
-
Kamil Albrycht, Adam A. Rynkiewicz, Michal Harasymczuk, Jakub Barylski, and Andrzej Zielezinski
- Subjects
phage ,host ,bacteria ,archaea ,phage-host interactions ,database ,Microbiology ,QR1-502 - Abstract
Understanding phage-host relationships is crucial for the study of virus biology and the application of phages in biotechnology and medicine. However, information concerning the range of hosts for bacterial and archaeal viruses is scattered across numerous databases and is difficult to obtain. Therefore, here we present PHD (Phage & Host Daily), a web application that offers a comprehensive, up-to-date catalog of known phage-host associations that allows users to select viruses targeting specific bacterial and archaeal taxa of interest. Our service combines the latest information on virus-host interactions from seven source databases with current taxonomic classification retrieved directly from the groups and institutions responsible for its maintenance. The web application also provides summary statistics on host and virus diversity, their pairwise interactions, and the host range of deposited phages. PHD is updated daily and available at http://phdaily.info or http://combio.pl/phdaily.
- Published
- 2022
- Full Text
- View/download PDF
42. Genome Mining Approach Reveals the Occurrence and Diversity Pattern of Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated Systems in Lactobacillus brevis Strains
- Author
-
Bahman Panahi, Mohammad Majidi, and Mohammad Amin Hejazi
- Subjects
CRISPR ,diversity ,evolution ,genome ,phage ,Microbiology ,QR1-502 - Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) together with their CRISPR-associated (Cas) genes are widely distributed in prokaryotes that provide an adaptive defense mechanism against foreign invasive DNA. There is relatively little knowledge about the CRISPR-Cas diversity and evolution in Lactobacillus brevis strains. Therefore, in this study, a genome-mining approach was employed to investigate the diversity and occurrence of the CRISPR-Cas system in 83 L. brevis strains. Moreover, trans-activating CRISPR RNA (tracrRNA) and protospacer adjacent motif (PAM) as pivotal elements for the successful targeting and inference of phages by the subtype II CRISPR-Cas systems were surveyed. Finally, evolutionary paths of L. brevis strains under selective pressure from foreign invasive DNA such as plasmids and phages of studied strains were surveyed using acquisition and deletion events analysis of spacers. A total of 127 confirmed CRISPRs were identified, which were distributed in 69 strains. Among strains with confirmed CRISPRs, 35 strains only contained one CRISPR locus, 23 strains contained two CRISPR loci, and 12 strains contained three to six CRISPR loci. L. brevis strains frequently harbor more than one CRISPR system. Analysis of confirmed CRISPR arrays showed that 31 out of 127 confirmed CRISPRs included Cas genes which were categorized as one of the II-A, II-C, and I-E subtypes. Analysis of subtype II-A spacers reflected divergent evolution for 18 strains into 16 unique groups. Additional analysis of spacer sequences also confirmed the implication of characterizing CRISPR-Cas systems in targeting of phages and plasmids. The current study highlighted the potential of utilizing CRISPR spacer polymorphism in genotyping lactobacillus strains. Moreover, it provides deep insights into the occurrence, diversity, and functional impacts of the CRISPR-Cas system in L. brevis strains.
- Published
- 2022
- Full Text
- View/download PDF
43. Isolation of Klebsiella pneumoniae phage vb_KpnS_MK54 and pathological assessment of endolysin in the treatment of pneumonia mice model.
- Author
-
Biao Lu, Xueping Yao, Guangli Han, Zidan Luo, Jieru Zhang, Kang Yong, Yin Wang, Yan Luo, Zexiao Yang, Meishen Ren, and Suizhong Cao
- Abstract
With the improper use of antibiotics, an increasing number of multidrug-resistant bacteria have been reported worldwide, posing challenges for disease treatment. Klebsiella pneumoniae is an important zoonotic pathogen that colonises the respiratory tract. Endolysin therapy has emerged with the development of phages. In this study, a lytic phage vB_KpnS_MK54 was isolated from the drinking water of a forest musk deer (FMD) farm in Sichuan Province. It was the first reported phage obtained from FMD. The primary biological characteristics were determined, and whole-genome sequencing analysis was performed. The phage which belongs to the family Siphoviridae is highly specific for lytic host bacteria and is moderately adaptable to different environments. Whole-genome sequencing results showed that the phage genome size was 46,218bp. There were 80 coding DNA sequences (CDSs) in total, 32 of which had known functions. The last CDS is the phage endolysin LysG24. A new peptide-modified endolysin (LysCA) was constituted by connecting the cecropin A peptide residues with LysG24 to investigate the antibacterial activities of both LysG24 and LysCA. The results showed that the lytic profile of LysG24 and LysCA was wider than that of phage MK54. For in vitro tests, both endolysins destroyed 99% of the host bacteria within 6 h. The lysing ability and environmental adaptability of LysCA were significantly stronger than those of LysG24. For in vivo tests, LysG24 and LysCA exhibited therapeutic effects in a mouse model of pneumonia wherewith the mice were infected with K. pneumoniae (LPKP), wherein both LysG24 and LysCA can effectively reduce the pulmonary inflammatory response. The LPKP bacterial load in the treatment group was significantly lower than that in the bacterial group, among which LysCA displayed a more obvious therapeutic effect. Furthermore, the safety test showed that the endolysins had no toxic effects on mice. In general, both LysG24 and LysCA showed excellent antibacterial activity in vivo and in vitro, with high safety and strong adaptability to the environment, manifesting their latent potential as new antimicrobial agents. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
44. Isolation of Klebsiella pneumoniae Phage vB_KpnS_MK54 and Pathological Assessment of Endolysin in the Treatment of Pneumonia Mice Model.
- Author
-
Lu, Biao, Yao, Xueping, Han, Guangli, Luo, Zidan, Zhang, Jieru, Yong, Kang, Wang, Yin, Luo, Yan, Yang, Zexiao, Ren, Meishen, and Cao, Suizhong
- Subjects
ANIMAL disease models ,LABORATORY mice ,NUCLEOTIDE sequencing ,C-peptide ,GENOME size ,KLEBSIELLA pneumoniae ,BACTERIOPHAGES - Abstract
With the improper use of antibiotics, an increasing number of multidrug-resistant bacteria have been reported worldwide, posing challenges for disease treatment. Klebsiella pneumoniae is an important zoonotic pathogen that colonises the respiratory tract. Endolysin therapy has emerged with the development of phages. In this study, a lytic phage vB_KpnS_MK54 was isolated from the drinking water of a forest musk deer (FMD) farm in Sichuan Province. It was the first reported phage obtained from FMD. The primary biological characteristics were determined, and whole-genome sequencing analysis was performed. The phage which belongs to the family Siphoviridae is highly specific for lytic host bacteria and is moderately adaptable to different environments. Whole-genome sequencing results showed that the phage genome size was 46,218 bp. There were 80 coding DNA sequences (CDSs) in total, 32 of which had known functions. The last CDS is the phage endolysin LysG24. A new peptide-modified endolysin (LysCA) was constituted by connecting the cecropin A peptide residues with LysG24 to investigate the antibacterial activities of both LysG24 and LysCA. The results showed that the lytic profile of LysG24 and LysCA was wider than that of phage MK54. For in vitro tests, both endolysins destroyed 99% of the host bacteria within 6 h. The lysing ability and environmental adaptability of LysCA were significantly stronger than those of LysG24. For in vivo tests, LysG24 and LysCA exhibited therapeutic effects in a mouse model of pneumonia wherewith the mice were infected with K. pneumoniae (LPKP), wherein both LysG24 and LysCA can effectively reduce the pulmonary inflammatory response. The LPKP bacterial load in the treatment group was significantly lower than that in the bacterial group, among which LysCA displayed a more obvious therapeutic effect. Furthermore, the safety test showed that the endolysins had no toxic effects on mice. In general, both LysG24 and LysCA showed excellent antibacterial activity in vivo and in vitro , with high safety and strong adaptability to the environment, manifesting their latent potential as new antimicrobial agents. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
45. Birds Kept in the German Zoo "Tierpark Berlin" Are a Common Source for Polyvalent Yersinia pseudotuberculosis Phages.
- Author
-
Hammerl, Jens Andre, Barac, Andrea, Bienert, Anja, Demir, Aslihan, Drüke, Niklas, Jäckel, Claudia, Matthies, Nina, Jun, Jin Woo, Skurnik, Mikael, Ulrich, Juliane, and Hertwig, Stefan
- Subjects
YERSINIA pseudotuberculosis ,RNA polymerases ,ZOO animals ,BACTERIOPHAGES ,ZOOS ,ESCHERICHIA coli - Abstract
Yersinia pseudotuberculosis is an important animal pathogen, particularly for birds, rodents, and monkeys, which is also able to infect humans. Indeed, an increasing number of reports have been published on zoo animals that were killed by this species. One option to treat diseased animals is the application of strictly lytic (virulent) phages. However, thus far relatively few phages infecting Y. pseudotuberculosis have been isolated and characterized. To determine the prevalence of Y. pseudotuberculosis phages in zoo animals, fecal samples of birds and some primates, maras, and peccaries kept in the Tierpark Berlin were analyzed. Seventeen out of 74 samples taken in 2013 and 2017 contained virulent phages. The isolated phages were analyzed in detail and could be allocated to three groups. The first group is composed of 10 T4-like phages (PYps2T taxon group: Myoviridae ; Tevenvirinae ; Tequatrovirus), the second group (PYps23T taxon group: Chaseviridae ; Carltongylesvirus ; Escherichia virus ST32) consists of five phages encoding a podovirus-like RNA polymerase that is related to an uncommon genus of myoviruses (e.g., Escherichia coli phage phiEcoM-GJ1), while the third group is comprised of two podoviruses (PYps50T taxon group: Autographiviridae ; Studiervirinae ; Berlinvirus) which are closely related to T7. The host range of the isolated phages differed significantly. Between 5.5 and 86.7% of 128 Y. pseudotuberculosis strains belonging to 20 serotypes were lysed by each phage. All phages were additionally able to lyse Y. enterocolitica B4/O:3 strains, when incubated at 37°C. Some phages also infected Y. pestis strains and even strains belonging to other genera of Enterobacteriaceae. A cocktail containing two of these phages would be able to lyse almost 93% of the tested Y. pseudotuberculosis strains. The study indicates that Y. pseudotuberculosis phages exhibiting a broad-host range can be isolated quite easily from zoo animals, particularly birds. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
46. Molecular Dissection of the Primase and Polymerase Activities of Deep-Sea Phage NrS-1 Primase-Polymerase.
- Author
-
Huang, Fengtao, Lu, Xueling, Yu, Chunxiao, Sliz, Piotr, Wang, Longfei, and Zhu, Bin
- Subjects
ZINC-finger proteins ,DNA polymerases ,BACTERIOPHAGES ,CATALYTIC domains ,CATALYTIC activity ,DISSECTION - Abstract
PrimPols are a class of primases that belong to the archaeo-eukaryotic primase (AEP) superfamily but have both primase and DNA polymerase activities. Replicative polymerase from NrS-1 phage (NrSPol) is a representative of the PrimPols. In this study, we identified key residues for the catalytic activity of NrSPol and found that a loop in NrSPol functionally replaces the zinc finger motif that is commonly found in other AEP family proteins. A helix bundle domain (HBD), conserved in the AEP superfamily, was recently reported to bind to the primase recognition site and to be crucial for initiation of primer synthesis. We found that NrSPol can recognize different primase recognition sites, and that the initiation site for primer synthesis is not stringent, suggesting that the HBD conformation is flexible. More importantly, we found that although the HBD-inactivating mutation impairs the primase activity of NrSPol, it significantly enhances the DNA polymerase activity, indicating that the HBD hinders the DNA polymerase activity. The conflict between the primase activity and the DNA polymerase activity in a single protein with the same catalytic domain may be one reason for why DNA polymerases are generally unable to synthesize DNA de novo. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
47. Ruminal Phages – A Review.
- Author
-
Lobo, Richard R. and Faciola, Antonio P.
- Subjects
FEED utilization efficiency ,ARCHAEBACTERIA ,BACTERIOPHAGES ,ANIMAL nutrition ,DYNAMIC stability ,ANIMAL feeding behavior - Abstract
The rumen ecosystem is a complex and dynamic environment, which hosts microorganisms including archaea, bacteria, protozoa, fungi, and viruses. These microorganisms interact with each other, altering the ruminal environment and substrates that will be available for the host digestion and metabolism. Viruses can infect the host and other microorganisms, which can drive changes in microorganisms' lysis rate, substrate availability, nutrient recycling, and population structure. The lysis of ruminal microorganisms' cells by viruses can release enzymes that enhance feedstuff fermentation, which may increase dietary nutrient utilization and feed efficiency. However, negative effects associated to viruses in the gastrointestinal tract have also been reported, in some cases, disrupting the dynamic stability of the ruminal microbiome, which can result in gastrointestinal dysfunctions. Therefore, the objective of this review is to summarize the current knowledge on ruminal virome, their interaction with other components of the microbiome and the effects on animal nutrition. Ruminal viruses can interact with all groups of microorganisms in the ruminal environment, which include bacteria, archaea, fungi, and protozoa. Physical-chemical parameters of the ruminal environment, such as pH, concentration of volatile fatty acids (VFA), ammonia, and other chemical components, can be modulated by the animal's diet. We hypothesized that such changes in the physical-chemical parameters of the ruminal environment can modify the infectivity of viral particles and change the lysis rate of microbial cells, consequently, changes on VFA production and microbial biomass could affect animals' performance. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
48. Birds Kept in the German Zoo 'Tierpark Berlin' Are a Common Source for Polyvalent Yersinia pseudotuberculosis Phages
- Author
-
Jens Andre Hammerl, Andrea Barac, Anja Bienert, Aslihan Demir, Niklas Drüke, Claudia Jäckel, Nina Matthies, Jin Woo Jun, Mikael Skurnik, Juliane Ulrich, and Stefan Hertwig
- Subjects
Yersinia pseudotuberculosis ,phage ,genome ,diversity ,Yersinia ,zoo animals ,Microbiology ,QR1-502 - Abstract
Yersinia pseudotuberculosis is an important animal pathogen, particularly for birds, rodents, and monkeys, which is also able to infect humans. Indeed, an increasing number of reports have been published on zoo animals that were killed by this species. One option to treat diseased animals is the application of strictly lytic (virulent) phages. However, thus far relatively few phages infecting Y. pseudotuberculosis have been isolated and characterized. To determine the prevalence of Y. pseudotuberculosis phages in zoo animals, fecal samples of birds and some primates, maras, and peccaries kept in the Tierpark Berlin were analyzed. Seventeen out of 74 samples taken in 2013 and 2017 contained virulent phages. The isolated phages were analyzed in detail and could be allocated to three groups. The first group is composed of 10 T4-like phages (PYps2T taxon group: Myoviridae; Tevenvirinae; Tequatrovirus), the second group (PYps23T taxon group: Chaseviridae; Carltongylesvirus; Escherichia virus ST32) consists of five phages encoding a podovirus-like RNA polymerase that is related to an uncommon genus of myoviruses (e.g., Escherichia coli phage phiEcoM-GJ1), while the third group is comprised of two podoviruses (PYps50T taxon group: Autographiviridae; Studiervirinae; Berlinvirus) which are closely related to T7. The host range of the isolated phages differed significantly. Between 5.5 and 86.7% of 128 Y. pseudotuberculosis strains belonging to 20 serotypes were lysed by each phage. All phages were additionally able to lyse Y. enterocolitica B4/O:3 strains, when incubated at 37°C. Some phages also infected Y. pestis strains and even strains belonging to other genera of Enterobacteriaceae. A cocktail containing two of these phages would be able to lyse almost 93% of the tested Y. pseudotuberculosis strains. The study indicates that Y. pseudotuberculosis phages exhibiting a broad-host range can be isolated quite easily from zoo animals, particularly birds.
- Published
- 2022
- Full Text
- View/download PDF
49. Corrigendum: Molecular Dissection of the Primase and Polymerase Activities of Deep-Sea Phage NrS-1 Primase-Polymerase
- Author
-
Fengtao Huang, Xueling Lu, Chunxiao Yu, Piotr Sliz, Longfei Wang, and Bin Zhu
- Subjects
DNA polymerase ,primase ,DNA replication ,de novo synthesis ,phage ,Microbiology ,QR1-502 - Published
- 2022
- Full Text
- View/download PDF
50. Ruminal Phages – A Review
- Author
-
Richard R. Lobo and Antonio P. Faciola
- Subjects
microbiome ,phage ,ruminal ecology ,ruminant nutrition ,virome ,Microbiology ,QR1-502 - Abstract
The rumen ecosystem is a complex and dynamic environment, which hosts microorganisms including archaea, bacteria, protozoa, fungi, and viruses. These microorganisms interact with each other, altering the ruminal environment and substrates that will be available for the host digestion and metabolism. Viruses can infect the host and other microorganisms, which can drive changes in microorganisms’ lysis rate, substrate availability, nutrient recycling, and population structure. The lysis of ruminal microorganisms’ cells by viruses can release enzymes that enhance feedstuff fermentation, which may increase dietary nutrient utilization and feed efficiency. However, negative effects associated to viruses in the gastrointestinal tract have also been reported, in some cases, disrupting the dynamic stability of the ruminal microbiome, which can result in gastrointestinal dysfunctions. Therefore, the objective of this review is to summarize the current knowledge on ruminal virome, their interaction with other components of the microbiome and the effects on animal nutrition.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.