7 results on '"Kredics L"'
Search Results
2. Corrigendum: Structural Diversity and Bioactivities of Peptaibol Compounds From the Longibrachiatum Clade of the Filamentous Fungal Genus Trichoderma .
- Author
-
Marik T, Tyagi C, Balázs D, Urbán P, Szepesi Á, Bakacsy L, Endre G, Rakk D, Szekeres A, Andersson MA, Salonen H, Druzhinina IS, Vágvölgyi C, and Kredics L
- Abstract
[This corrects the article DOI: 10.3389/fmicb.2019.01434.]., (Copyright © 2020 Marik, Tyagi, Balázs, Urbán, Szepesi, Bakacsy, Endre, Rakk, Szekeres, Andersson, Salonen, Druzhinina, Vágvölgyi and Kredics.)
- Published
- 2020
- Full Text
- View/download PDF
3. Characterization of Aspergillus tamarii Strains From Human Keratomycoses: Molecular Identification, Antifungal Susceptibility Patterns and Cyclopiazonic Acid Producing Abilities.
- Author
-
Homa M, Manikandan P, Szekeres A, Kiss N, Kocsubé S, Kredics L, Alshehri B, Dukhyil AAB, Revathi R, Narendran V, Vágvölgyi C, Shobana CS, and Papp T
- Abstract
Aspergillus tamarii appears to be an emerging aetiological agent of human keratomycoses in South India. The investigated strains were isolated from six suspected fungal keratitis patients attending a tertiary care eye hospital in Coimbatore (Tamil Nadu, India), and were initially identified by the microscopic examinations of the scrapings and the cultures. Our data suggest that A. tamarii could be easily overlooked when identification is carried out based on morphological characteristics alone, while the sequence analysis of the calmodulin gene can be used successfully to recognize this species accurately. According to the collected clinical data, ocular trauma is a common risk factor for the infection that gradually developed from mild to severe ulcers and could be healed with an appropriate combined antifungal therapy. Antifungal susceptibility testing revealed that A. tamarii strains are susceptible to the most commonly used topical or systemic antifungal agents (i.e., econazole, itraconazole and ketoconazole) except for natamycin. Moreover, natamycin proved to be similarly less effective than the azoles against A. tamarii in our drug interaction tests, as the predominance of indifferent interactions was revealed between natamycin and econazole and between natamycin and itraconazole as well. Four and five isolates of A. tamarii were confirmed to produce cyclopiazonic acid (CPA) in RPMI-1640 - which is designed to mimic the composition of human extracellular fluids - and in yeast extract sucrose (YES) medium, respectively, which is a widely used culture medium for testing mycotoxin production. Although a ten times lower mycelial biomass was recorded in RPMI-1640 than in YES medium, the toxin contents of the samples were of the same order of magnitude in both types of media. There might be a relationship between the outcome of infections and the toxigenic properties of the infecting fungal strains. However, this remains to be investigated in the future., (Copyright © 2019 Homa, Manikandan, Szekeres, Kiss, Kocsubé, Kredics, Alshehri, Bin Dukhyil, Revathi, Narendran, Vágvölgyi, Shobana and Papp.)
- Published
- 2019
- Full Text
- View/download PDF
4. Structural Diversity and Bioactivities of Peptaibol Compounds From the Longibrachiatum Clade of the Filamentous Fungal Genus Trichoderma .
- Author
-
Marik T, Tyagi C, Balázs D, Urbán P, Szepesi Á, Bakacsy L, Endre G, Rakk D, Szekeres A, Andersson MA, Salonen H, Druzhinina IS, Vágvölgyi C, and Kredics L
- Abstract
This study examined the structural diversity and bioactivity of peptaibol compounds produced by species from the phylogenetically separated Longibrachiatum Clade of the filamentous fungal genus Trichoderma , which contains several biotechnologically, agriculturally and clinically important species. HPLC-ESI-MS investigations of crude extracts from 17 species of the Longibrachiatum Clade ( T. aethiopicum, T. andinense, T. capillare, T. citrinoviride, T. effusum, T. flagellatum, T. ghanense, T. konilangbra, T. longibrachiatum, T. novae-zelandiae, T. pinnatum, T . parareesei, T. pseudokoningii, T. reesei, T. saturnisporum, T. sinensis , and T. orientale ) revealed several new and recurrent 20-residue peptaibols related to trichobrachins, paracelsins, suzukacillins, saturnisporins, trichoaureocins, trichocellins, longibrachins, hyporientalins, trichokonins, trilongins, metanicins, trichosporins, gliodeliquescins, alamethicins and hypophellins, as well as eight 19-residue sequences from a new subfamily of peptaibols named brevicelsins. Non-ribosomal peptide synthetase genes were mined from the available genome sequences of the Longibrachiatum Clade. Their annotation and product prediction were performed in silico and revealed full agreement in 11 out of 20 positions regarding the amino acids predicted based on the signature sequences and the detected amino acids incorporated. Molecular dynamics simulations were performed for structural characterization of four selected peptaibol sequences: paracelsins B, H and their 19-residue counterparts brevicelsins I and IV. Loss of position R6 in brevicelsins resulted in smaller helical structures with higher atomic fluctuation for every residue than the structures formed by paracelsins. We observed the formation of highly bent, almost hairpin-like, helical structures throughout the trajectory, along with linear conformation. Bioactivity tests were performed on the purified peptaibol extract of T . reesei on clinically and phytopathologically important filamentous fungi, mammalian cells, and Arabidopsis thaliana seedlings. Porcine kidney cells and boar spermatozoa proved to be sensitive to the purified peptaibol extract. Peptaibol concentrations ≥0.3 mg ml
-1 deterred the growth of A . thaliana . However, negative effects to plants were not detected at concentrations below 0.1 mg ml-1 , which could still inhibit plant pathogenic filamentous fungi, suggesting that those peptaibols reported here may have applications for plant protection.- Published
- 2019
- Full Text
- View/download PDF
5. Molecular Tools for Monitoring Trichoderma in Agricultural Environments.
- Author
-
Kredics L, Chen L, Kedves O, Büchner R, Hatvani L, Allaga H, Nagy VD, Khaled JM, Alharbi NS, and Vágvölgyi C
- Abstract
Various Trichoderma species possess significance in agricultural systems as biofertilizers or biocontrol agents (BCAs). Besides these beneficial features, certain Trichoderma species can also act as agricultural pests, causing the green mold disease of cultivated mushrooms. This double-faced nature of the genus in agricultural environments points at the importance of proper monitoring tools, which can be used to follow the presence and performance of candidate as well as patented and/or registered biocontrol strains, to assess the possible risks arising from their application, but also to track harmful, unwanted Trichoderma species like the green molds in mushroom growing facilities. The objective of this review is to discuss the molecular tools available for the species- and strain-specific monitoring of Trichoderma , ranging from immunological approaches and fingerprinting tools to exogenous markers, specific primers used in polymerase chain reaction (PCR) as well as "omics" approaches.
- Published
- 2018
- Full Text
- View/download PDF
6. Belowground Microbiota and the Health of Tree Crops.
- Author
-
Mercado-Blanco J, Abrantes I, Barra Caracciolo A, Bevivino A, Ciancio A, Grenni P, Hrynkiewicz K, Kredics L, and Proença DN
- Abstract
Trees are crucial for sustaining life on our planet. Forests and land devoted to tree crops do not only supply essential edible products to humans and animals, but also additional goods such as paper or wood. They also prevent soil erosion, support microbial, animal, and plant biodiversity, play key roles in nutrient and water cycling processes, and mitigate the effects of climate change acting as carbon dioxide sinks. Hence, the health of forests and tree cropping systems is of particular significance. In particular, soil/rhizosphere/root-associated microbial communities (known as microbiota) are decisive to sustain the fitness, development, and productivity of trees. These benefits rely on processes aiming to enhance nutrient assimilation efficiency (plant growth promotion) and/or to protect against a number of (a)biotic constraints. Moreover, specific members of the microbial communities associated with perennial tree crops interact with soil invertebrate food webs, underpinning many density regulation mechanisms. This review discusses belowground microbiota interactions influencing the growth of tree crops. The study of tree-(micro)organism interactions taking place at the belowground level is crucial to understand how they contribute to processes like carbon sequestration, regulation of ecosystem functioning, and nutrient cycling. A comprehensive understanding of the relationship between roots and their associate microbiota can also facilitate the design of novel sustainable approaches for the benefit of these relevant agro-ecosystems. Here, we summarize the methodological approaches to unravel the composition and function of belowground microbiota, the factors influencing their interaction with tree crops, their benefits and harms, with a focus on representative examples of Biological Control Agents (BCA) used against relevant biotic constraints of tree crops. Finally, we add some concluding remarks and suggest future perspectives concerning the microbiota-assisted management strategies to sustain tree crops.
- Published
- 2018
- Full Text
- View/download PDF
7. South Indian Isolates of the Fusarium solani Species Complex From Clinical and Environmental Samples: Identification, Antifungal Susceptibilities, and Virulence.
- Author
-
Homa M, Galgóczy L, Manikandan P, Narendran V, Sinka R, Csernetics Á, Vágvölgyi C, Kredics L, and Papp T
- Abstract
Members of the Fusarium solani species complex (FSSC) are the most frequently isolated fusaria from soil. Moreover, this complex solely affects more than 100 plant genera, and is also one of the major opportunistic human pathogenic filamentous fungi, being responsible for approximately two-third of fusariosis cases. Mycotic keratitis due to Fusarium species is among the leading causes of visual impairment and blindness in South India, but its management is still challenging due to the poor susceptibility of the isolates to conventional antifungal drugs. Aims of the present study were to isolate South Indian clinical and environmental FSSC strains and identify them to species level, to determine the actual trends in their susceptibilities to antifungal therapeutic drugs and to compare the virulence of clinical and environmental FSSC members. Based on the partial sequences of the translation elongation factor 1α gene, the majority of the isolates-both from keratomycosis and environment-were confirmed as F. falciforme , followed by F. keratoplasticum and F. solani sensu stricto . In vitro antifungal susceptibilities to commonly used azole, allylamine and polyene antifungals were determined by the CLSI M38-A2 broth microdilution method. The first generation triazoles, fluconazole and itraconazole proved to be ineffective against all isolates tested. This phenomenon has already been described before, as fusaria are intrinsically resistant to them. However, our results indicated that despite the intensive agricultural use of azole compounds, fusaria have not developed resistance against the imidazole class of antifungals. In order to compare the virulence of different FSSC species from clinical and environmental sources, a Drosophila melanogaster model was used. MyD88 mutant flies having impaired immune responses were highly susceptible to all the examined fusaria. In wild-type flies, one F. falciforme and two F. keratoplasticum strains also reduced the survival significantly. Pathogenicity seemed to be independent from the origin of the isolates.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.